基于SFLA算法的神经网络优化matlab仿真

2024-02-18 04:44

本文主要是介绍基于SFLA算法的神经网络优化matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

4.1 SFLA的基本原理

4.2 神经网络优化

5.完整程序


1.程序功能描述

       基于SFLA算法的神经网络优化。通过混合蛙跳算法,对神经网络的训练进行优化,优化目标位神经网络的训练误差,通过优化,使得训练误差越来越小,从而完成神经网络权值的优化。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

.....................................................................
% 定义神经元数量  
Nnet       = 12;
% 创建一个前馈神经网络,训练函数为'traingdx'  
NET        = feedforwardnet(Nnet,'traingdx');
% 使用Pin作为输入,Pout作为目标来训练神经网络,训练结果存储在tr中  
[NET,~]    = train(NET,Pin,Pout);
% 计算神经网络的性能
Performace = perform(NET,Pin,Pout); 
%定义目标函数
jobs       = @(x) func_mse(x,NET,Pin,Pout);%SFLA算法% 优化后的权重和偏置存储在x中,误差存储在err_ga中  
[x, ~]     = func_sfla(jobs, RC*Nnet+Nnet+Nnet+1);
%优化后的网络,使用优化后的权重和偏置更新神经网络  
NET        = setwb(NET, x');% 计算优化后的神经网络误差  
Outputs=NET(Pin);
TestOutputs=NET(Tin);err1=Pout-Outputs;
err2=Tout-TestOutputs;figure;
subplot(2,2,1)
plot(Pout,'b');  
hold on;
plot(Outputs,'r');
legend('训练集的真实值','训练集的预测值');subplot(2,2,2)
plot(Tout,'b'); 
hold on;
plot(TestOutputs,'r');
legend('测试集的真实值','测试集的预测值');subplot(2,2,3)
plot(err1,'linewidth',2); 
legend('训练集误差');
ylim([-0.5,0.5]);subplot(2,2,4)
plot(err2,'linewidth',2);  
legend('测试集误差');
ylim([-0.5,0.5]);figure;
subplot(1,2,1)
[yfits,gof] = fit(Pout',Outputs','poly3');
plot(Pout',Outputs','o');
hold on
plot(yfits,'k-','predobs');
xlabel('真实值');
ylabel('预测输出值');   subplot(1,2,2)
[yfits,gof] = fit(Tout',TestOutputs','poly3');
plot(Tout',TestOutputs','o');
hold on
plot(yfits,'r-','predobs');  
xlabel('真实值');
ylabel('预测输出值');   
29

4.本算法原理

        神经网络优化是一个复杂的问题,通常涉及到权重和偏置的调整,以便最小化训练误差。SFLA是一种启发式搜索算法,它结合了蛙跳算法和遗传算法的特点,用于求解全局优化问题。在神经网络优化中,SFLA可以用于寻找最优的权重和偏置,从而改善网络的性能。

4.1 SFLA的基本原理

        SFLA的基本原理是将搜索空间中的解(即神经网络的权重和偏置)视为“蛙群”。算法通过模拟蛙群的跳跃行为来搜索解空间,寻找最优解。

  • 初始化:随机生成一组初始解(蛙群),每个解代表神经网络的一组权重和偏置。
  • 分组:将蛙群按照适应度(如训练误差)排序,并分成若干个子群。
  • 局部搜索:在每个子群内,进行蛙跳操作,即根据一定的规则和步长更新解的位置(权重和偏置)。
  • 全局信息交流:定期将各个子群的最优解进行交换,以促进全局搜索。
  • 迭代:重复上述步骤,直到满足停止准则(如达到最大迭代次数或解的质量不再显著提高)。

4.2 神经网络优化

       通过SFLA算法对神经网络参数进行全局优化,可以有效地探索参数空间并找到更优的神经网络结构配置,从而提高模型的预测性能。

       基于SFLA的神经网络优化是一种有效的全局优化方法。它通过模拟蛙群的跳跃行为来搜索解空间,结合局部搜索和全局信息交流的策略,能够在复杂的搜索空间中找到近似最优解。然而,为了获得更好的性能,可能需要对SFLA的参数(如子群大小、跳跃步长等)进行仔细调整。此外,与其他优化算法(如遗传算法、粒子群优化等)的结合也是值得研究的方向。

5.完整程序

VVV

这篇关于基于SFLA算法的神经网络优化matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/720095

相关文章

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX