自适应滤波:维纳滤波器——GSC算法及语音增强

2024-02-18 02:10

本文主要是介绍自适应滤波:维纳滤波器——GSC算法及语音增强,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:桂。

时间:2017-03-26  06:06:44

链接:http://www.cnblogs.com/xingshansi/p/6621185.html 

声明:欢迎被转载,不过记得注明出处哦~


  【读书笔记04】

前言

仍然是西蒙.赫金的《自适应滤波器原理》第四版第二章,首先看到无约束维纳滤波,接着到了一般约束条件的滤波,此处为约束扩展的维纳滤波,全文包括:

  1)背景介绍;

  2)广义旁瓣相消(Generalized Sidelobe Cancellation, GSC)理论推导;

  3)GSC应用——语音阵列信号增强;

内容为自己的学习记录,其中错误之处,还请各位帮忙指正! 

 

一、背景介绍

在一般约束条件的维纳滤波中,有${{\bf{w}}^H}{\bf{s}}\left( {{\theta _0}} \right) = g$的约束条件,即${{\bf{s}}^H}\left( {{\theta _0}} \right){\bf{w}} = g$.如${\bf{s}}\left( {{\theta _0}} \right)$为旋转向量时,希望在$\theta _0$处保留波束—>对应$g_1  = 1$,希望在$\theta_2$处抑制波束—>对应$g_2 = 0$,写成一般形式:

写成更一般的形式:

${{\bf{C}}^H}{\bf{w}} = {\bf{g}}$

假设$\bf{w}$权值个数为M,在一般约束维纳滤波中可以看出:限定条件使得结果更符合预期的效果。假设C为M×L的矩阵:L个线性约束条件。对于M个变量的方程组,对应唯一解最多有M个方程,即:对于L个线性约束来讲,我们仍可以继续利用剩下的M-L个自由度进行约束,使得结果更加符合需求(比如增强某信号、抑制某信号等),这便是GSC的背景。

 

二、GSC理论推导

  A-理论介绍

书中的推导较为繁琐,我们可以从投影空间的角度加以理解,也就是最小二乘结果的矩阵求逆形式,给出简要说明:

对于矩阵A(N×M):

  • 如果A是满列秩(N>=M)对于符合LA=I的矩阵解为:${\bf{L}} = {\left( {{{\bf{A}}^H}{\bf{A}}} \right)^{ - 1}}{{\bf{A}}^H}$;
  • 如果A是满行秩(N<=M)对于符合AR=I的矩阵解为:${\bf{R}} = {{\bf{A}}^H}{\left( {{{\bf{A}}}{\bf{A}^H}} \right)^{ - 1}}$.

对于${{\bf{C}}^H}{\bf{w}} = {\bf{g}}$,得出最优解:

${{\bf{w}}_q} = {\bf{C}}{\left( {{{\bf{C}}^H}{\bf{C}}} \right)^{ - 1}}{\bf{g}}$

记:

${{\bf{w}}_{re}} = {\bf{w}} - {{\bf{w}}_q}$

为了便于对余量${{\bf{w}}_{re}}$进行控制,将C扩展为:[ C | C$_{a}$ ],$\bf{C}_a$的列向量为矩阵C列向量张成空间的正交补空间的基,即:

${\bf{C}}_a^H{\bf{C}} = {\bf{0}}$

分析新的空间特性:

上式有${{\bf{C}}^H}{{\bf{w}}_{re}} = {\bf{0}}$,这就说明只要满足该条件,${{\bf{r}}_e} = {\bf{C}}_a^H{{\bf{w}}_{re}}$就是补空间的余量,如何保证一定有${{\bf{C}}^H}{{\bf{w}}_{re}} = {\bf{0}}$呢?可以将${{{\bf{w}}_{re}}}$写为:${ - {{\bf{C}}_a}{{\bf{w}}_a}}$的形式,之所以添加$-$可能是因为正交补空间可以认为C列向量空间不能表征的成分,我们通常认为这一部分为该丢弃的残差,也因为是残差:${{\bf{C}}_a}$通常被称为阻塞矩阵(取Block之意),很多书籍用$\bf{B}$表示。

 重新给出推导的结果:

${\bf{w}} = {{\bf{w}}_q} - {{\bf{C}}_a}{{\bf{w}}_a}$       s.t. ${{\bf{C}}_a}{{\bf{w}}_q} = {\bf{0}}$

对应结构图为:

简化后可以认为上支、下支:

这是维纳滤波器的典型结构。

  B-阻塞矩阵的选取

阻塞矩阵这一段摘自:秦博雅《基于低复杂度自适应信号处理的波束成形技术研究》p22~23.

大致有以下几种方式:

 

 

 

 

 

 

 

三、阵列信号增强

学了这个GSC怎么应用呢?这里参考一篇07年adaptive beamforming(引用见最后的参考)的例子,简要说明思路,关于阻塞矩阵。

文中结构图:

即:分别利用GSC框架,通过最小互信息实现信号的分离,其中$w_a$、$C_a$即$B$都提前给定,优化$w_{a1}$、$w_{a2}$。

定义互信息:

其中,

在幅度(严格来讲是傅里叶系数幅度)为正态条件下,得到:

给出输出表达式:

并给出准则函数——相关系数的表达式:

其中,

其中相关、互相关无法得到统计信息,仍然可以基于遍历性假设:利用时间换取空间,近似求取。

文中提到引入正则化(regularization)

这个只是优化过程中的限定条件,与GSC框架关系不大,不再补充。

这里在网上找去了一个8通道(channel)的混合语音(两个说话人),利用该算法进行分析,给出主要代码:

主要代码:

MMI_define_var(Xf1,Xf2);
%initialization
W1 = [0 0 0 0.1 0 0 0.2 ];
W2 = [0 2 0 0 0.2 0 0.1 ];
[Wa1,Wa2]=MMI_EstimateWa([W1 W2]');

其中MMI_define_var定义变量:

function MMI_define_var(Xf1,Xf2)global Wq B covX1X1 covX2X2  covX1X2  len;Wq=[1 1 1 1 1 1 1 1]'*1/8;
B=[1 -1 0 0 0 0 0 0 ;0 1 -1 0 0 0 0 0 ;0 0 1 -1 0 0 0 0 ;0 0 0 1 -1 0 0 0 ;0 0 0 0 1 -1 0 0 ;0 0 0 0 0 1 -1 0 ;0 0 0 0 0 0 1 -1 ]';[~,len]=size(Xf2);
XfMean1=mean(Xf1.');
XfMean2=mean(Xf2.');
for i=1:8Xf1(i,:)=Xf1(i,:)-XfMean1(i);Xf2(i,:)=Xf2(i,:)-XfMean2(i);
endcovX1X1=Xf1*Xf1'/len;
covX2X2=Xf2*Xf2'/len;
covX1X2=Xf1*Xf2'/len;
MMI_EstimateWa实现参数估计:
function [Wa1 Wa2]=MMI_EstimateWa(W)
%obtain the Wa
ww=[real(W)' imag(W)']';options = optimset('LargeScale','off','display','off');
[X,fval] = fminunc('MMI_real_imag_objfun',ww,options);
X_real=X(1:14);
X_imag=X(15:28);
Wa1_real=X_real(1:7);
Wa1_imag=X_imag(1:7);
Wa2_real=X_real(8:14);
Wa2_imag=X_imag(8:14);Wa1=Wa1_real+sqrt(-1)*Wa1_imag;
Wa2=Wa2_real+sqrt(-1)*Wa2_imag;
end

对应结果图:

可以听出来:虽然略有杂音,但两个说话人的声音已经实现了分离,GSC框架有效。如果不同说话人声达时间估计准确,迭代算法应用合适,效果会更好,此处主要介绍GSC应用,细节不再琢磨,有兴趣的可以探索探索。

 

参考:

  • K. Kumatani, T. Gehrig, U. Mayer, E. Stoimenov, J. McDonough and M. WÖlfel, "Adaptive Beamforming With a Minimum Mutual Information Criterion," in IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 8, pp. 2527-2541, Nov. 2007.
  • Simon Haykin 《Adaptive Filter Theory Fourth Edition》.

这篇关于自适应滤波:维纳滤波器——GSC算法及语音增强的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/719723

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

Open3D 基于法线的双边滤波

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 输入参数: 输出参数: 参数影响: 2.2完整代码 三、实现效果 3.1原始点云 3.2滤波后点云 Open3D点云算法汇总及实战案例汇总的目录地址: Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客 一、概述         基于法线的双边

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费