自适应滤波:维纳滤波器——GSC算法及语音增强

2024-02-18 02:10

本文主要是介绍自适应滤波:维纳滤波器——GSC算法及语音增强,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:桂。

时间:2017-03-26  06:06:44

链接:http://www.cnblogs.com/xingshansi/p/6621185.html 

声明:欢迎被转载,不过记得注明出处哦~


  【读书笔记04】

前言

仍然是西蒙.赫金的《自适应滤波器原理》第四版第二章,首先看到无约束维纳滤波,接着到了一般约束条件的滤波,此处为约束扩展的维纳滤波,全文包括:

  1)背景介绍;

  2)广义旁瓣相消(Generalized Sidelobe Cancellation, GSC)理论推导;

  3)GSC应用——语音阵列信号增强;

内容为自己的学习记录,其中错误之处,还请各位帮忙指正! 

 

一、背景介绍

在一般约束条件的维纳滤波中,有${{\bf{w}}^H}{\bf{s}}\left( {{\theta _0}} \right) = g$的约束条件,即${{\bf{s}}^H}\left( {{\theta _0}} \right){\bf{w}} = g$.如${\bf{s}}\left( {{\theta _0}} \right)$为旋转向量时,希望在$\theta _0$处保留波束—>对应$g_1  = 1$,希望在$\theta_2$处抑制波束—>对应$g_2 = 0$,写成一般形式:

写成更一般的形式:

${{\bf{C}}^H}{\bf{w}} = {\bf{g}}$

假设$\bf{w}$权值个数为M,在一般约束维纳滤波中可以看出:限定条件使得结果更符合预期的效果。假设C为M×L的矩阵:L个线性约束条件。对于M个变量的方程组,对应唯一解最多有M个方程,即:对于L个线性约束来讲,我们仍可以继续利用剩下的M-L个自由度进行约束,使得结果更加符合需求(比如增强某信号、抑制某信号等),这便是GSC的背景。

 

二、GSC理论推导

  A-理论介绍

书中的推导较为繁琐,我们可以从投影空间的角度加以理解,也就是最小二乘结果的矩阵求逆形式,给出简要说明:

对于矩阵A(N×M):

  • 如果A是满列秩(N>=M)对于符合LA=I的矩阵解为:${\bf{L}} = {\left( {{{\bf{A}}^H}{\bf{A}}} \right)^{ - 1}}{{\bf{A}}^H}$;
  • 如果A是满行秩(N<=M)对于符合AR=I的矩阵解为:${\bf{R}} = {{\bf{A}}^H}{\left( {{{\bf{A}}}{\bf{A}^H}} \right)^{ - 1}}$.

对于${{\bf{C}}^H}{\bf{w}} = {\bf{g}}$,得出最优解:

${{\bf{w}}_q} = {\bf{C}}{\left( {{{\bf{C}}^H}{\bf{C}}} \right)^{ - 1}}{\bf{g}}$

记:

${{\bf{w}}_{re}} = {\bf{w}} - {{\bf{w}}_q}$

为了便于对余量${{\bf{w}}_{re}}$进行控制,将C扩展为:[ C | C$_{a}$ ],$\bf{C}_a$的列向量为矩阵C列向量张成空间的正交补空间的基,即:

${\bf{C}}_a^H{\bf{C}} = {\bf{0}}$

分析新的空间特性:

上式有${{\bf{C}}^H}{{\bf{w}}_{re}} = {\bf{0}}$,这就说明只要满足该条件,${{\bf{r}}_e} = {\bf{C}}_a^H{{\bf{w}}_{re}}$就是补空间的余量,如何保证一定有${{\bf{C}}^H}{{\bf{w}}_{re}} = {\bf{0}}$呢?可以将${{{\bf{w}}_{re}}}$写为:${ - {{\bf{C}}_a}{{\bf{w}}_a}}$的形式,之所以添加$-$可能是因为正交补空间可以认为C列向量空间不能表征的成分,我们通常认为这一部分为该丢弃的残差,也因为是残差:${{\bf{C}}_a}$通常被称为阻塞矩阵(取Block之意),很多书籍用$\bf{B}$表示。

 重新给出推导的结果:

${\bf{w}} = {{\bf{w}}_q} - {{\bf{C}}_a}{{\bf{w}}_a}$       s.t. ${{\bf{C}}_a}{{\bf{w}}_q} = {\bf{0}}$

对应结构图为:

简化后可以认为上支、下支:

这是维纳滤波器的典型结构。

  B-阻塞矩阵的选取

阻塞矩阵这一段摘自:秦博雅《基于低复杂度自适应信号处理的波束成形技术研究》p22~23.

大致有以下几种方式:

 

 

 

 

 

 

 

三、阵列信号增强

学了这个GSC怎么应用呢?这里参考一篇07年adaptive beamforming(引用见最后的参考)的例子,简要说明思路,关于阻塞矩阵。

文中结构图:

即:分别利用GSC框架,通过最小互信息实现信号的分离,其中$w_a$、$C_a$即$B$都提前给定,优化$w_{a1}$、$w_{a2}$。

定义互信息:

其中,

在幅度(严格来讲是傅里叶系数幅度)为正态条件下,得到:

给出输出表达式:

并给出准则函数——相关系数的表达式:

其中,

其中相关、互相关无法得到统计信息,仍然可以基于遍历性假设:利用时间换取空间,近似求取。

文中提到引入正则化(regularization)

这个只是优化过程中的限定条件,与GSC框架关系不大,不再补充。

这里在网上找去了一个8通道(channel)的混合语音(两个说话人),利用该算法进行分析,给出主要代码:

主要代码:

MMI_define_var(Xf1,Xf2);
%initialization
W1 = [0 0 0 0.1 0 0 0.2 ];
W2 = [0 2 0 0 0.2 0 0.1 ];
[Wa1,Wa2]=MMI_EstimateWa([W1 W2]');

其中MMI_define_var定义变量:

function MMI_define_var(Xf1,Xf2)global Wq B covX1X1 covX2X2  covX1X2  len;Wq=[1 1 1 1 1 1 1 1]'*1/8;
B=[1 -1 0 0 0 0 0 0 ;0 1 -1 0 0 0 0 0 ;0 0 1 -1 0 0 0 0 ;0 0 0 1 -1 0 0 0 ;0 0 0 0 1 -1 0 0 ;0 0 0 0 0 1 -1 0 ;0 0 0 0 0 0 1 -1 ]';[~,len]=size(Xf2);
XfMean1=mean(Xf1.');
XfMean2=mean(Xf2.');
for i=1:8Xf1(i,:)=Xf1(i,:)-XfMean1(i);Xf2(i,:)=Xf2(i,:)-XfMean2(i);
endcovX1X1=Xf1*Xf1'/len;
covX2X2=Xf2*Xf2'/len;
covX1X2=Xf1*Xf2'/len;
MMI_EstimateWa实现参数估计:
function [Wa1 Wa2]=MMI_EstimateWa(W)
%obtain the Wa
ww=[real(W)' imag(W)']';options = optimset('LargeScale','off','display','off');
[X,fval] = fminunc('MMI_real_imag_objfun',ww,options);
X_real=X(1:14);
X_imag=X(15:28);
Wa1_real=X_real(1:7);
Wa1_imag=X_imag(1:7);
Wa2_real=X_real(8:14);
Wa2_imag=X_imag(8:14);Wa1=Wa1_real+sqrt(-1)*Wa1_imag;
Wa2=Wa2_real+sqrt(-1)*Wa2_imag;
end

对应结果图:

可以听出来:虽然略有杂音,但两个说话人的声音已经实现了分离,GSC框架有效。如果不同说话人声达时间估计准确,迭代算法应用合适,效果会更好,此处主要介绍GSC应用,细节不再琢磨,有兴趣的可以探索探索。

 

参考:

  • K. Kumatani, T. Gehrig, U. Mayer, E. Stoimenov, J. McDonough and M. WÖlfel, "Adaptive Beamforming With a Minimum Mutual Information Criterion," in IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 8, pp. 2527-2541, Nov. 2007.
  • Simon Haykin 《Adaptive Filter Theory Fourth Edition》.

这篇关于自适应滤波:维纳滤波器——GSC算法及语音增强的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/719723

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

使用Python实现文本转语音(TTS)并播放音频

《使用Python实现文本转语音(TTS)并播放音频》在开发涉及语音交互或需要语音提示的应用时,文本转语音(TTS)技术是一个非常实用的工具,下面我们来看看如何使用gTTS和playsound库将文本... 目录什么是 gTTS 和 playsound安装依赖库实现步骤 1. 导入库2. 定义文本和语言 3

讯飞webapi语音识别接口调用示例代码(python)

《讯飞webapi语音识别接口调用示例代码(python)》:本文主要介绍如何使用Python3调用讯飞WebAPI语音识别接口,重点解决了在处理语音识别结果时判断是否为最后一帧的问题,通过运行代... 目录前言一、环境二、引入库三、代码实例四、运行结果五、总结前言基于python3 讯飞webAPI语音

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Python中__new__()方法适应及注意事项详解

《Python中__new__()方法适应及注意事项详解》:本文主要介绍Python中__new__()方法适应及注意事项的相关资料,new()方法是Python中的一个特殊构造方法,用于在创建对... 目录前言基本用法返回值单例模式自定义对象创建注意事项总结前言new() 方法在 python 中是一个

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

C#中图片如何自适应pictureBox大小

《C#中图片如何自适应pictureBox大小》文章描述了如何在C#中实现图片自适应pictureBox大小,并展示修改前后的效果,修改步骤包括两步,作者分享了个人经验,希望对大家有所帮助... 目录C#图片自适应pictureBox大小编程修改步骤总结C#图片自适应pictureBox大小上图中“z轴

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1