农夫过河问题-广度优先搜索-逻辑运算

2024-02-17 04:30

本文主要是介绍农夫过河问题-广度优先搜索-逻辑运算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

辣鸡小玲的题解
冯向阳老师的数据结构-队列
农夫过河,上题目:

题目

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

然后贴代码

#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <string>
#include <sstream>
using namespace std;
const int MAXLISTSIZE = 100;
template<class ElemType>
class SqQueue
{
private:ElemType *elem;   // 存储空间基址int fronter;   // 队头指针int rearer;   // 队尾指针int maxSize;        // 允许的最大存储容量(以sizeof(ElemType)为单位
public://初始化顺序队列SqQueue(int ms = 20){if(ms==0){ms=MAXLISTSIZE;}elem=new ElemType [ms];if(!elem){cout<<"Fail to get space in SqQueue!"<<endl;exit(0);}maxSize=ms;fronter=0;rearer=0;}//删除顺序队列~SqQueue(){QueueDestroy();}//将顺序队列置为空bool QueueClear(){delete [] elem;elem=new ElemType [maxSize];if(!elem){cout<<"Fail to get space in QueueClear!"<<endl;exit(0);}fronter=0;rearer=0;}//设置顺序栈的长度//bool SetListLength(int len);//返回顺序队列长度int QueueLength(){return rearer-fronter;}//判断顺序队列是否为空bool QueueisEmpty() const{return fronter == rearer;}//判断顺序队列是否为满bool QueueFull() const{return rearer==maxSize;}//用e返回队头元素bool GetFront(ElemType &e){if(!QueueisEmpty()){e=elem[fronter];return true;}cout<<"Queue is empty in GetFront"<<endl;return false;}//入队bool enQueue(const ElemType &e){if(rearer<maxSize){elem[rearer++]=e;return true;}else{if(DoubleSpace())//如果加倍成功{elem[rearer++]=e;return true;}else{cout<<"Fail to DoubleSpace in enQueue"<<endl;return false;}}return true;}//出队bool deQueue(ElemType &e){if(QueueisEmpty()){cout<<"Queue is Empty in deQueue"<<endl;return false;}e=elem[fronter++];return true;}//销毁顺序队列bool QueueDestroy(){delete [] elem;fronter=0;rearer=0;return true;}//顺序队列最大存储空间加倍bool DoubleSpace(){ElemType *newElem;maxSize*=2;newElem= new ElemType [maxSize];if(!newElem){cout<<"Fail to get space in DoubleSpace"<<endl;return false;}for(int i=0; i<maxSize/2; i++){newElem[i]=elem[i];}elem=newElem;return true;}
};
//位向量从低位到高位分别代表羊、白菜、狼、农夫
//0000代表都在南岸,1111代表都在北岸
enum {GOAT=1,CABBAGE=2,WOLF=4,FARMER=8};//MARK I
//求人或物当前状态的函数
bool goat(int st)//MARK II
{return (st&GOAT)!=0;
}
bool cabbage(int st)
{return (st&CABBAGE)!=0;
}
bool wolf(int st)
{return (st&WOLF)!=0;
}
bool farmer(int st)
{return (st&FARMER)!=0;
}
//安全判断函数,如果安全则返回true
bool safe(int st)//MARK III
{if((goat(st)==cabbage(st))&&(goat(st)!=farmer(st)))return false;//羊吃白菜if((goat(st)==wolf(st))&&(goat(st)!=farmer(st)))return false;//狼吃羊return true;
}
template<class ElemType>
void farmerProblem(SqQueue<ElemType> &S)//MARK IV
{int mover,st,st_new;int route[16]= {0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1};S.enQueue(0);while(!S.QueueisEmpty()&&route[15]==-1)//队列不空且未到达末了状态{S.deQueue(st);for(mover=1; mover<=8; mover<<=1) //mover指狼、菜、羊{if(farmer(st)==(0!=(st&mover)))//与农夫同岸?{//逻辑与:&   全1为1//逻辑或:|   有1为1//逻辑异或:^ 一0一1为1st_new=st^(FARMER|mover);//求过河后的状态if(route[st_new]==-1&&safe(st_new)){//新状态没到过且安全,记录路径并入队列route[st_new]=st;S.enQueue(st_new);}}}}//打印输出string pri[16]= {"0000","0001","0010","0011","0100","0101","0110","0111","1000","1001","1010","1011","1100","1101","1110","1111"};int i=15;while(i!=0){cout<<pri[i]<<endl;i=route[i];}cout<<"0000"<<endl;
}
int main()
{SqQueue<int> A;farmerProblem(A);return 0;
}

MARK I 143行enum枚举

这个枚举设计得很精妙噢,在一个字节的二进制里,0001,0010,0100,1000对应十进制就是1,2,4,8,把羊、菜、狼、人和一个数关联起来,以便后面可以用各种逻辑运算符做运算。

MARK II 145-160行状态函数

传进来的这个st表示当前的状态,题目里用0表示某物在南岸,1表示某物在北岸,比如1001就表示,人和羊在北岸,狼和菜在南岸。
逻辑与&:全1为1
比如st=0101(狼和羊在北岸,人和菜在南岸)去逻辑与羊,那结果就是
0101&0001=0001,调用goat(st)函数得到的返回值就是true,这就代表st状态下,羊在北岸;同样的你可以用st逻辑与人,0101&1000=0000,调用farmer(st)的返回值就是false,表示st状态下,人在南岸。
这样,用逻辑运算符就可以得到某个物品在st状态下在南岸还是北岸了。

MARK III 162-169行安全判断函数

上面说了逻辑与,再看164行的第一个if,如果在st状态下羊、菜同岸且羊、人不同岸,那狼会把羊吃了,所以不安全,return false;第二个if同理。除了两个if的状态,其他状态都是安全的。

MARK IV 171-195行 广度优先搜索

174行是用一个数组标记路线、记录路线,跳转到190行去看,把st存到下标为new_st的数组位置中,具体原理,MARK V里面讲。第一个结点存储0000,其他点都赋值成-1,表示没有探索过。
和深度优先搜索不太一样,深度优先搜索是用栈来存储结点,而广度优先搜索用队列,并且队列里是不留东西的(除了最后一个结点,遇到它的时候就是跳出循环的时候),这就要求用其他的数据结构来存储路径,这题里用了数组。
176判定循环条件,因为这题简单农夫问题是必定有解的,所以我们只要把这个解求出来就行,不用考虑无解的情况。
178,取出队列头的结点,进for循环。mover<<=1是左移运算符(移1位),相当于*2(0001->0010),是对当前状态,狼、菜、羊能否过河的遍历,能过河,就过去,且新状态往队列里放。
写着写着发现一个好玩的问题噢
初始状态:0000 四件物品都在南岸
第一步:人和羊过河 0000->1001
第二步:人回去南岸 1001->0001
第三步:人带菜/狼过河 0001->1011
--------------------------------0001->1101
显然,第三步带狼/菜过河都是可以的,但是输出中是选择了带菜过河
这是因为,当mover位移到0010的时候,发现可以带菜过河,于是农夫就把菜带过河了,这个操作搞完以后,农夫就在对岸了,就和狼不在同一边了。
还有第二步,代码中是怎么实现,人回去而不带羊回去的?
1.人羊一起回去的话,会因为route数组标记过而进不去187行的if
2.mover=8的时候就是人自己回去对岸的情况

MARK V 190行 路径存储

代码:route[st_new]=st 的解释
route数组里,探索过的路径会存下前后关联的两个状态,比如说,前一个状态是0000(初始),下一个状态是1001(农夫带羊过河),那数组route里,route[1001]的位置(就是route[9])就会存0000,也就是route[9]=0;
这样,打印路径的时候(196-205行),我只要初始让i=15,然后打印i,更新的时候,让i=route[i],就会转到前一个状态去,一直打印一直转到前一个状态,等到i=0的时候跳出循环就可以完成路径打印了。

这篇关于农夫过河问题-广度优先搜索-逻辑运算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/716674

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

SpringBoot+Redis防止接口重复提交问题

《SpringBoot+Redis防止接口重复提交问题》:本文主要介绍SpringBoot+Redis防止接口重复提交问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录前言实现思路代码示例测试总结前言在项目的使用使用过程中,经常会出现某些操作在短时间内频繁提交。例