【数据聚类】基于杂草算法优化K-means算法实现数据聚类含Matlab源码

2024-02-16 15:59

本文主要是介绍【数据聚类】基于杂草算法优化K-means算法实现数据聚类含Matlab源码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测 雷达通信  无线传感器

信号处理 图像处理 路径规划 元胞自动机 无人机

⛄ 内容介绍

针对传统k-means算法对初始聚类中心选取的随机性,易收敛于局部最优等缺点.本文利用杂草算法和k-means算法相结合,提高了k-means算法性能.实验结果表明文中算法与传统聚类算法相比具有更高的聚类正确率,更好的聚类质量.

⛄ 部分代码

function m=PlotRes(X, sol)

    % Cluster Centers

    m = sol.Position;

    k = size(m,1);

    % Cluster Indices

    ind = sol.Out.ind;    

    Colors = hsv(k);

    for j=1:k

        Xj = X(ind==j,:);

               subplot(2,3,1)

        plot(Xj(:,1),Xj(:,2),'x','LineWidth',1,'Color',Colors(j,:));title('IWO');

        hold on;

%         plot(m(:,1),m(:,2),'ok','LineWidth',2,'MarkerSize',6);

                subplot(2,3,2)

        plot(Xj(:,1),Xj(:,3),'x','LineWidth',1,'Color',Colors(j,:));title('IWO');

        hold on;

%         plot(m(:,1),m(:,3),'ok','LineWidth',2,'MarkerSize',6);

                subplot(2,3,3)

        plot(Xj(:,1),Xj(:,4),'x','LineWidth',1,'Color',Colors(j,:));title('IWO');

        hold on;

%         plot(m(:,1),m(:,4),'ok','LineWidth',2,'MarkerSize',6);

                subplot(2,3,4)

        plot(Xj(:,2),Xj(:,3),'x','LineWidth',1,'Color',Colors(j,:));title('IWO');

        hold on;

%         plot(m(:,2),m(:,3),'ok','LineWidth',2,'MarkerSize',6);

                subplot(2,3,5)

        plot(Xj(:,2),Xj(:,4),'x','LineWidth',1,'Color',Colors(j,:));title('IWO');

        hold on;

%         plot(m(:,2),m(:,4),'ok','LineWidth',2,'MarkerSize',6);

                subplot(2,3,6)

        plot(Xj(:,3),Xj(:,4),'x','LineWidth',1,'Color',Colors(j,:));title('IWO');

        hold on;

%         plot(m(:,3),m(:,4),'ok','LineWidth',2,'MarkerSize',6);

        

    end  

hold off;

end

⛄ 运行结果

⛄ 参考文献

[1]于海涛,贾美娟,王慧强,邵国强. 基于人工鱼群的优化K-means聚类算法[J]. 计算机科学, 2018, 39(12):60-64.

[2]王丽君郇益斌. 基于杂交PSO的k-means聚类算法[J]. 电子世界, 2016, 000(014):192,195.

❤️ 关注我领取海量matlab电子书和数学建模资料

❤️部分理论引用网络文献,若有侵权联系博主删除

 

这篇关于【数据聚类】基于杂草算法优化K-means算法实现数据聚类含Matlab源码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/715029

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结