【数据聚类】基于杂草算法优化K-means算法实现数据聚类含Matlab源码

2024-02-16 15:59

本文主要是介绍【数据聚类】基于杂草算法优化K-means算法实现数据聚类含Matlab源码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测 雷达通信  无线传感器

信号处理 图像处理 路径规划 元胞自动机 无人机

⛄ 内容介绍

针对传统k-means算法对初始聚类中心选取的随机性,易收敛于局部最优等缺点.本文利用杂草算法和k-means算法相结合,提高了k-means算法性能.实验结果表明文中算法与传统聚类算法相比具有更高的聚类正确率,更好的聚类质量.

⛄ 部分代码

function m=PlotRes(X, sol)

    % Cluster Centers

    m = sol.Position;

    k = size(m,1);

    % Cluster Indices

    ind = sol.Out.ind;    

    Colors = hsv(k);

    for j=1:k

        Xj = X(ind==j,:);

               subplot(2,3,1)

        plot(Xj(:,1),Xj(:,2),'x','LineWidth',1,'Color',Colors(j,:));title('IWO');

        hold on;

%         plot(m(:,1),m(:,2),'ok','LineWidth',2,'MarkerSize',6);

                subplot(2,3,2)

        plot(Xj(:,1),Xj(:,3),'x','LineWidth',1,'Color',Colors(j,:));title('IWO');

        hold on;

%         plot(m(:,1),m(:,3),'ok','LineWidth',2,'MarkerSize',6);

                subplot(2,3,3)

        plot(Xj(:,1),Xj(:,4),'x','LineWidth',1,'Color',Colors(j,:));title('IWO');

        hold on;

%         plot(m(:,1),m(:,4),'ok','LineWidth',2,'MarkerSize',6);

                subplot(2,3,4)

        plot(Xj(:,2),Xj(:,3),'x','LineWidth',1,'Color',Colors(j,:));title('IWO');

        hold on;

%         plot(m(:,2),m(:,3),'ok','LineWidth',2,'MarkerSize',6);

                subplot(2,3,5)

        plot(Xj(:,2),Xj(:,4),'x','LineWidth',1,'Color',Colors(j,:));title('IWO');

        hold on;

%         plot(m(:,2),m(:,4),'ok','LineWidth',2,'MarkerSize',6);

                subplot(2,3,6)

        plot(Xj(:,3),Xj(:,4),'x','LineWidth',1,'Color',Colors(j,:));title('IWO');

        hold on;

%         plot(m(:,3),m(:,4),'ok','LineWidth',2,'MarkerSize',6);

        

    end  

hold off;

end

⛄ 运行结果

⛄ 参考文献

[1]于海涛,贾美娟,王慧强,邵国强. 基于人工鱼群的优化K-means聚类算法[J]. 计算机科学, 2018, 39(12):60-64.

[2]王丽君郇益斌. 基于杂交PSO的k-means聚类算法[J]. 电子世界, 2016, 000(014):192,195.

❤️ 关注我领取海量matlab电子书和数学建模资料

❤️部分理论引用网络文献,若有侵权联系博主删除

 

这篇关于【数据聚类】基于杂草算法优化K-means算法实现数据聚类含Matlab源码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/715029

相关文章

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.