时间序列分析 - ARMA, ARIMA, SARIMA

2024-02-16 01:38

本文主要是介绍时间序列分析 - ARMA, ARIMA, SARIMA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【目标数据】

ARMA: 针对弱平稳/宽平稳时间序列分析

ARIMA: 针对非平稳非周期性时间序列分析

SARIMA: 针对非平稳周期性时间序列分析。

 

自协方差与自相关系数

时间序列在t时刻记作Xt,在s时刻记作Xs,那么这两个时刻对应的时间序列的自协方差的计算公式为:

\gamma(t,s)=E[(Xt-\bar{Xt})(Xs-\bar{Xs})]

假设时间间隔t-s=k, 并且假设时间序列的均值为常数u, 那么上述公式可以写成

\gamma(k)=\gamma(t,s)=E[(Xt-\mu )(Xs-\mu)]

自相关系数的表达式为:

\rho (k)=\rho (t,s)=\frac{\gamma (t,s)}{\sqrt{​{\sigma_{t}^{2} }}\sqrt{​{\sigma_{s}^{2} }}}

如果方差恒定,上述公式可以写成:

\rho (k)=\frac{\gamma (k)}{\sigma ^{2}}

 

【平稳性】

满足以下三个条件即为宽平稳:

1)均值为常数

2)自协方差仅与时间差相关,与具体时刻无关

3)自相关系数仅与时间差相关,与具体时刻无关。或者说方差为常数。

非平稳的时间序列可以通过差分使其变为平稳的时间序列。

 

【平稳性检验】

ADF检验(单位根检验):

单位根检验是指检验序列中是否存在单位根,如果存在单位根就说明是非平稳时间序列。

python的statsmodels.tsa.stattools.adfuller提供了单位根检验方法。

 

【滞后算子表示法】

时间序列中,通常用L或者B表示之前的若干值,假设时间序列为:

X=\{X_{1},X_{2},\dots \}\,

那么对于t>1:

\,LX_{t}=X_{​{t-1}} 或者

{\displaystyle \,BX_{t}=X_{t-1}}  或者

\,X_{t}=LX_{​{t+1}}\;t\geq 1\, 或者

\,L^{​{-1}}X_{​{t}}=X_{​{t+1}}\, 以及

\,L^{k}X_{​{t}}=X_{​{t-k}}.\,

 

【ARMA】

Autoregressive–moving-average model 自回归移动平均

包含对过去值的p阶回归以及过去error误差的q阶移动平均。

如果用AR(p)来描述,公式可以写成:

X_{t}=c+\sum _{i=1}^{p}\varphi _{i}X_{t-i}+\varepsilon _{t}.\,


其中\varepsilon _{t}是高斯白噪声。

用MA(q)来描述,公式为:

X_{t}=\mu +\varepsilon _{t}+\sum _{i=1}^{q}\theta _{i}\varepsilon _{t-i}\,

μ 是 X_{t}的均值 (often assumed to equal 0),  \varepsilon _{t}, \varepsilon _{t-1},... 是白噪声.

将AR与MA综合起来,可以表示为:

X_{t}=c+\varepsilon _{t}+\sum _{i=1}^{p}\varphi _{i}X_{t-i}+\sum _{i=1}^{q}\theta _{i}\varepsilon _{t-i}.\,

忽略常数项c,将X移至等号左侧,用滞后算子表示法:

\left(1-\sum _{i=1}^{p}\varphi _{i}L^{i}\right)X_{t}=\left(1+\sum _{i=1}^{q}\theta _{i}L^{i}\right)\varepsilon _{t}\,,

简化表示:

\varphi (L)X_{t}=\theta (L)\varepsilon _{t}\,或者 {\frac {\varphi (L)}{\theta (L)}}X_{t}=\varepsilon _{t}\,.

其中:

\varphi (L)=1-\sum _{i=1}^{p}\varphi _{i}L^{i}.\,     \theta (L)=1+\sum _{i=1}^{q}\theta _{i}L^{i}.\,

 

【ARIMA】

Autoregressive integrated moving average

对于非平稳并且非周期的时间序列,可以通过差分操作使之变为平稳时间序列,差分是指将当前时刻的值减去前一时刻的值,得到的时间序列还可以继续差分下去,比如总共进行了d次差分操作,那么叫做d阶差分,因此ARIMA在ARMA的基础上进行了d阶差分操作以后的公式为:

{\displaystyle \left(1-\sum _{i=1}^{p}\phi _{i}L^{i}\right)(1-L)^{d}X_{t}=\left(1+\sum _{i=1}^{q}\theta _{i}L^{i}\right)\varepsilon _{t}\,}

 

【SARIMA】

周期性时间序列,可以作为ARIMA的扩展,因此,首先需要去除周期性,去除的方式是在周期间隔上做一次ARIMA,此时可以得到一个非平稳非周期性的时间序列,然后在此基础之上再一次使用ARIMA进行分析。可以表示为:

ARIMA(p, d, q) × (P, D, Q)S ,其中各参数含义为:

  • P: 周期性自回归阶数.
  • D: 周期性差分阶数.
  • Q: 周期性移动平均阶数.
  • S: 周期时间间隔.

p,d,q的含义与上面的ARIMA里面含义相同。

举个例子:对于周期为12的非平稳时间序列,那么ARIMA(3,1,0) x (2,1,0)12的含义为:

D=1意味着当前时刻t的值与过去一个周期时间点t-12的1阶差分,

P=2意味着当前时刻t的值是过去两个周期时间点t-12以及t-24的回归。

处理以后得到的时间序列再通过ARIMA(3,1,0)进行分析。

 

参考:

https://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model

https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average

https://en.wikipedia.org/wiki/Lag_operator

https://machinelearningmastery.com/sarima-for-time-series-forecasting-in-python/

 

这篇关于时间序列分析 - ARMA, ARIMA, SARIMA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/713135

相关文章

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

如何使用 Bash 脚本中的time命令来统计命令执行时间(中英双语)

《如何使用Bash脚本中的time命令来统计命令执行时间(中英双语)》本文介绍了如何在Bash脚本中使用`time`命令来测量命令执行时间,包括`real`、`user`和`sys`三个时间指标,... 使用 Bash 脚本中的 time 命令来统计命令执行时间在日常的开发和运维过程中,性能监控和优化是不

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Java将时间戳转换为Date对象的方法小结

《Java将时间戳转换为Date对象的方法小结》在Java编程中,处理日期和时间是一个常见需求,特别是在处理网络通信或者数据库操作时,本文主要为大家整理了Java中将时间戳转换为Date对象的方法... 目录1. 理解时间戳2. Date 类的构造函数3. 转换示例4. 处理可能的异常5. 考虑时区问题6.

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r