时间序列分析 - ARMA, ARIMA, SARIMA

2024-02-16 01:38

本文主要是介绍时间序列分析 - ARMA, ARIMA, SARIMA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【目标数据】

ARMA: 针对弱平稳/宽平稳时间序列分析

ARIMA: 针对非平稳非周期性时间序列分析

SARIMA: 针对非平稳周期性时间序列分析。

 

自协方差与自相关系数

时间序列在t时刻记作Xt,在s时刻记作Xs,那么这两个时刻对应的时间序列的自协方差的计算公式为:

\gamma(t,s)=E[(Xt-\bar{Xt})(Xs-\bar{Xs})]

假设时间间隔t-s=k, 并且假设时间序列的均值为常数u, 那么上述公式可以写成

\gamma(k)=\gamma(t,s)=E[(Xt-\mu )(Xs-\mu)]

自相关系数的表达式为:

\rho (k)=\rho (t,s)=\frac{\gamma (t,s)}{\sqrt{​{\sigma_{t}^{2} }}\sqrt{​{\sigma_{s}^{2} }}}

如果方差恒定,上述公式可以写成:

\rho (k)=\frac{\gamma (k)}{\sigma ^{2}}

 

【平稳性】

满足以下三个条件即为宽平稳:

1)均值为常数

2)自协方差仅与时间差相关,与具体时刻无关

3)自相关系数仅与时间差相关,与具体时刻无关。或者说方差为常数。

非平稳的时间序列可以通过差分使其变为平稳的时间序列。

 

【平稳性检验】

ADF检验(单位根检验):

单位根检验是指检验序列中是否存在单位根,如果存在单位根就说明是非平稳时间序列。

python的statsmodels.tsa.stattools.adfuller提供了单位根检验方法。

 

【滞后算子表示法】

时间序列中,通常用L或者B表示之前的若干值,假设时间序列为:

X=\{X_{1},X_{2},\dots \}\,

那么对于t>1:

\,LX_{t}=X_{​{t-1}} 或者

{\displaystyle \,BX_{t}=X_{t-1}}  或者

\,X_{t}=LX_{​{t+1}}\;t\geq 1\, 或者

\,L^{​{-1}}X_{​{t}}=X_{​{t+1}}\, 以及

\,L^{k}X_{​{t}}=X_{​{t-k}}.\,

 

【ARMA】

Autoregressive–moving-average model 自回归移动平均

包含对过去值的p阶回归以及过去error误差的q阶移动平均。

如果用AR(p)来描述,公式可以写成:

X_{t}=c+\sum _{i=1}^{p}\varphi _{i}X_{t-i}+\varepsilon _{t}.\,


其中\varepsilon _{t}是高斯白噪声。

用MA(q)来描述,公式为:

X_{t}=\mu +\varepsilon _{t}+\sum _{i=1}^{q}\theta _{i}\varepsilon _{t-i}\,

μ 是 X_{t}的均值 (often assumed to equal 0),  \varepsilon _{t}, \varepsilon _{t-1},... 是白噪声.

将AR与MA综合起来,可以表示为:

X_{t}=c+\varepsilon _{t}+\sum _{i=1}^{p}\varphi _{i}X_{t-i}+\sum _{i=1}^{q}\theta _{i}\varepsilon _{t-i}.\,

忽略常数项c,将X移至等号左侧,用滞后算子表示法:

\left(1-\sum _{i=1}^{p}\varphi _{i}L^{i}\right)X_{t}=\left(1+\sum _{i=1}^{q}\theta _{i}L^{i}\right)\varepsilon _{t}\,,

简化表示:

\varphi (L)X_{t}=\theta (L)\varepsilon _{t}\,或者 {\frac {\varphi (L)}{\theta (L)}}X_{t}=\varepsilon _{t}\,.

其中:

\varphi (L)=1-\sum _{i=1}^{p}\varphi _{i}L^{i}.\,     \theta (L)=1+\sum _{i=1}^{q}\theta _{i}L^{i}.\,

 

【ARIMA】

Autoregressive integrated moving average

对于非平稳并且非周期的时间序列,可以通过差分操作使之变为平稳时间序列,差分是指将当前时刻的值减去前一时刻的值,得到的时间序列还可以继续差分下去,比如总共进行了d次差分操作,那么叫做d阶差分,因此ARIMA在ARMA的基础上进行了d阶差分操作以后的公式为:

{\displaystyle \left(1-\sum _{i=1}^{p}\phi _{i}L^{i}\right)(1-L)^{d}X_{t}=\left(1+\sum _{i=1}^{q}\theta _{i}L^{i}\right)\varepsilon _{t}\,}

 

【SARIMA】

周期性时间序列,可以作为ARIMA的扩展,因此,首先需要去除周期性,去除的方式是在周期间隔上做一次ARIMA,此时可以得到一个非平稳非周期性的时间序列,然后在此基础之上再一次使用ARIMA进行分析。可以表示为:

ARIMA(p, d, q) × (P, D, Q)S ,其中各参数含义为:

  • P: 周期性自回归阶数.
  • D: 周期性差分阶数.
  • Q: 周期性移动平均阶数.
  • S: 周期时间间隔.

p,d,q的含义与上面的ARIMA里面含义相同。

举个例子:对于周期为12的非平稳时间序列,那么ARIMA(3,1,0) x (2,1,0)12的含义为:

D=1意味着当前时刻t的值与过去一个周期时间点t-12的1阶差分,

P=2意味着当前时刻t的值是过去两个周期时间点t-12以及t-24的回归。

处理以后得到的时间序列再通过ARIMA(3,1,0)进行分析。

 

参考:

https://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model

https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average

https://en.wikipedia.org/wiki/Lag_operator

https://machinelearningmastery.com/sarima-for-time-series-forecasting-in-python/

 

这篇关于时间序列分析 - ARMA, ARIMA, SARIMA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/713135

相关文章

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

go中的时间处理过程

《go中的时间处理过程》:本文主要介绍go中的时间处理过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 获取当前时间2 获取当前时间戳3 获取当前时间的字符串格式4 相互转化4.1 时间戳转时间字符串 (int64 > string)4.2 时间字符串转时间

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五