【零基础强化学习】100行代码教你实现基于DQN的gym登山车

2024-02-15 14:40

本文主要是介绍【零基础强化学习】100行代码教你实现基于DQN的gym登山车,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于DQN的gym登山车🤔

  • 写在前面
  • show me code, no bb
  • 界面展示
  • 写在最后
    • 谢谢点赞交流!(❁´◡`❁)

更多代码: gitee主页:https://gitee.com/GZHzzz
博客主页: CSDN:https://blog.csdn.net/gzhzzaa

写在前面

作为一个新手,写这个强化学习-基础知识专栏是想和大家分享一下自己强化学习的学习历程,希望大家互相交流一起进步。希望自己在2022年能保证把强化学习基础概念都过一遍,主要是成体系介绍强化学习的基础知识,而且在gitee收集了强化学习经典论文和基于pytorch的经典模型 ,大家一起互相学习啊!可能会有很多错漏,希望大家批评指正!不要高估一年的努力,也不要低估十年的积累,与君共勉!

show me code, no bb

#这是一堆初始化
import gym
import random
import torch
import torch.nn as nn
from torch.utils.data import Dataset
import os
#env = gym.make('CartPole-v0')
env = gym.make('MountainCar-v0') #action = (0,1,2) = (left, no_act, right)
#env = gym.make('Hopper-v3')
print(env.observation_space)
#print(env.action_space)
#简单的线性模型
def mkdir(path):folder = os.path.exists(path)if not folder:                   os.makedirs(path)
def GetModel():#In features:2(state) ,out:3 action qreturn nn.Sequential(nn.Linear(2, 16), nn.LeakyReLU(inplace=True), nn.Linear(16,24),nn.LeakyReLU(inplace=True), nn.Linear(24,3))
#创建数据集
class RLDataset(Dataset):def __init__(self, samples, transform = None, target_transform = None):#samples = [(s,a,r,s_), ...]self.samples = self.transform(samples)def __getitem__(self, index):#if self.transform is not None:#    img = self.transform(img) return self.samples[index]def __len__(self):return len(self.samples)def transform(self, samples):transSamples = []for (s,a,r,s_) in samples:sT = torch.tensor(s,).to(torch.float32)sT_ = torch.tensor(s_).to(torch.float32)transSamples.append((sT, a, r, sT_))return transSamples#采样环境函数,可以设置随机操作的概率。重点在于reward的设计
def GetSamplesFromEnv(env, model, epoch, max_steps, drop_ratio = 0.8):train_samples = []each_sample = Noneenv.reset()observation_new = Noneobservation_old = Nonemodel.eval()for i_episode in range(epoch):observation_new = env.reset()observation_old = env.reset()for t in range(max_steps):env.render()#print(observation)if random.random() > 1-drop_ratio:action = env.action_space.sample()else:inputT = torch.tensor(observation_new).to(torch.float32)action = torch.argmax(model(inputT)).item()#print(action)observation_new, reward, done, info = env.step(action)#print(reward)#We record samples.if t > 0 :#reward += observation_new[0]#if observation_new[0] > -0.35:#    reward += (observation_new[0] + 0.36)*5if observation_new[0] > -0.2:reward += 0.2elif observation_new[0] > -0.15:reward += 0.5elif observation_new[0] > -0.1:reward += 0.7each_sample = (observation_old, action, reward, observation_new)train_samples.append(each_sample)observation_old = observation_newif done:#失败的采样不打印出来if t != 199:print("Episode finished after {} timesteps".format(t+1))breakreturn train_samples
#训练网络。这里可能gather函数比较绕,还有双网络更新比较费解。忽略掉这些,和正常训练循环一样
#gamma是贝尔曼方程里的衰减因子
def TrainNet(net_target, net_eval, trainloader, criterion, optimizer, device, epoch_total, gamma):running_loss = 0.0iter_times = 0net_target.eval()net_eval.train()for epoch in range(epoch_total + 1):if epoch > 0:           print('epoch %d, loss %.5f' % (epoch, running_loss))running_loss = 0.0if epoch == epoch_total: break        for i, data in enumerate(trainloader, 0):if iter_times % 100 == 0:net_target.load_state_dict(net_eval.state_dict())s,a,r,s_ = dataoptimizer.zero_grad()#output = Q_predicted.q_t0 = net_eval(s)q_t1 = net_target(s_).detach()q_t1 = gamma * (r + torch.max(q_t1,dim=1)[0]).to(torch.float32)loss = criterion(q_t1, torch.gather(q_t0, dim=1, index=a.unsqueeze(1)).squeeze(1))loss.sum().backward()optimizer.step()running_loss += loss.item()iter_times += 1net_target.load_state_dict(net_eval.state_dict())    print('Finished Training')
if __name__ == '__main__':mkdir('model')#最后是一大堆主循环device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")net_target, net_eval = GetModel(), GetModel()criterion = nn.MSELoss()optimizer = torch.optim.Adam(net_eval.parameters(),lr=0.01)train_samples = []goodmodel_idx = 0for i in range(300):drop_ratio = 0.8 - 0.0077*isample_times = 10tmpSample = GetSamplesFromEnv(env,net_eval, sample_times, 200, drop_ratio)train_samples += tmpSample#每次sample的长度就代表了采取的步数,登山车里是越小越好。如果是倒立摆,则是越大越好if len(tmpSample) < sample_times * 160:print("good model!save it!")torch.save(net_eval.state_dict(), "goodmodel" + str(goodmodel_idx) + ".pth")goodmodel_idx += 1#dataset里存着最新的不超过4000的样本if len(train_samples) > 4000:train_samples = train_samples[len(tmpSample):len(train_samples)]trainset = RLDataset(train_samples)trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=0,pin_memory=True)TrainNet(net_target, net_eval, trainloader, criterion, optimizer, device, 10, 0.9)if i%50 == 0:PATH = "model/model"+str(i)+".pth"torch.save(net_eval.state_dict(), PATH)env.close()#这一堆是测试看效果用的#PATH = 'model/model42.pth'#net_eval.load_state_dict(torch.load(PATH))#net_target.load_state_dict(torch.load(PATH))#GetSamplesFromEnv(env,net_eval, 20, 200, 0)
  • 自己过了一遍,代码可直接跑通😎,包括模型保存,模型测试,你懂的!

界面展示

在这里插入图片描述

写在最后

十年磨剑,与君共勉!
更多代码:gitee主页:https://gitee.com/GZHzzz
博客主页:CSDN:https://blog.csdn.net/gzhzzaa

  • Fighting!😎

在这里插入图片描述

while True:Go life

在这里插入图片描述

谢谢点赞交流!(❁´◡`❁)

这篇关于【零基础强化学习】100行代码教你实现基于DQN的gym登山车的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711680

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo