【零基础强化学习】100行代码教你实现基于DQN的gym登山车

2024-02-15 14:40

本文主要是介绍【零基础强化学习】100行代码教你实现基于DQN的gym登山车,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于DQN的gym登山车🤔

  • 写在前面
  • show me code, no bb
  • 界面展示
  • 写在最后
    • 谢谢点赞交流!(❁´◡`❁)

更多代码: gitee主页:https://gitee.com/GZHzzz
博客主页: CSDN:https://blog.csdn.net/gzhzzaa

写在前面

作为一个新手,写这个强化学习-基础知识专栏是想和大家分享一下自己强化学习的学习历程,希望大家互相交流一起进步。希望自己在2022年能保证把强化学习基础概念都过一遍,主要是成体系介绍强化学习的基础知识,而且在gitee收集了强化学习经典论文和基于pytorch的经典模型 ,大家一起互相学习啊!可能会有很多错漏,希望大家批评指正!不要高估一年的努力,也不要低估十年的积累,与君共勉!

show me code, no bb

#这是一堆初始化
import gym
import random
import torch
import torch.nn as nn
from torch.utils.data import Dataset
import os
#env = gym.make('CartPole-v0')
env = gym.make('MountainCar-v0') #action = (0,1,2) = (left, no_act, right)
#env = gym.make('Hopper-v3')
print(env.observation_space)
#print(env.action_space)
#简单的线性模型
def mkdir(path):folder = os.path.exists(path)if not folder:                   os.makedirs(path)
def GetModel():#In features:2(state) ,out:3 action qreturn nn.Sequential(nn.Linear(2, 16), nn.LeakyReLU(inplace=True), nn.Linear(16,24),nn.LeakyReLU(inplace=True), nn.Linear(24,3))
#创建数据集
class RLDataset(Dataset):def __init__(self, samples, transform = None, target_transform = None):#samples = [(s,a,r,s_), ...]self.samples = self.transform(samples)def __getitem__(self, index):#if self.transform is not None:#    img = self.transform(img) return self.samples[index]def __len__(self):return len(self.samples)def transform(self, samples):transSamples = []for (s,a,r,s_) in samples:sT = torch.tensor(s,).to(torch.float32)sT_ = torch.tensor(s_).to(torch.float32)transSamples.append((sT, a, r, sT_))return transSamples#采样环境函数,可以设置随机操作的概率。重点在于reward的设计
def GetSamplesFromEnv(env, model, epoch, max_steps, drop_ratio = 0.8):train_samples = []each_sample = Noneenv.reset()observation_new = Noneobservation_old = Nonemodel.eval()for i_episode in range(epoch):observation_new = env.reset()observation_old = env.reset()for t in range(max_steps):env.render()#print(observation)if random.random() > 1-drop_ratio:action = env.action_space.sample()else:inputT = torch.tensor(observation_new).to(torch.float32)action = torch.argmax(model(inputT)).item()#print(action)observation_new, reward, done, info = env.step(action)#print(reward)#We record samples.if t > 0 :#reward += observation_new[0]#if observation_new[0] > -0.35:#    reward += (observation_new[0] + 0.36)*5if observation_new[0] > -0.2:reward += 0.2elif observation_new[0] > -0.15:reward += 0.5elif observation_new[0] > -0.1:reward += 0.7each_sample = (observation_old, action, reward, observation_new)train_samples.append(each_sample)observation_old = observation_newif done:#失败的采样不打印出来if t != 199:print("Episode finished after {} timesteps".format(t+1))breakreturn train_samples
#训练网络。这里可能gather函数比较绕,还有双网络更新比较费解。忽略掉这些,和正常训练循环一样
#gamma是贝尔曼方程里的衰减因子
def TrainNet(net_target, net_eval, trainloader, criterion, optimizer, device, epoch_total, gamma):running_loss = 0.0iter_times = 0net_target.eval()net_eval.train()for epoch in range(epoch_total + 1):if epoch > 0:           print('epoch %d, loss %.5f' % (epoch, running_loss))running_loss = 0.0if epoch == epoch_total: break        for i, data in enumerate(trainloader, 0):if iter_times % 100 == 0:net_target.load_state_dict(net_eval.state_dict())s,a,r,s_ = dataoptimizer.zero_grad()#output = Q_predicted.q_t0 = net_eval(s)q_t1 = net_target(s_).detach()q_t1 = gamma * (r + torch.max(q_t1,dim=1)[0]).to(torch.float32)loss = criterion(q_t1, torch.gather(q_t0, dim=1, index=a.unsqueeze(1)).squeeze(1))loss.sum().backward()optimizer.step()running_loss += loss.item()iter_times += 1net_target.load_state_dict(net_eval.state_dict())    print('Finished Training')
if __name__ == '__main__':mkdir('model')#最后是一大堆主循环device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")net_target, net_eval = GetModel(), GetModel()criterion = nn.MSELoss()optimizer = torch.optim.Adam(net_eval.parameters(),lr=0.01)train_samples = []goodmodel_idx = 0for i in range(300):drop_ratio = 0.8 - 0.0077*isample_times = 10tmpSample = GetSamplesFromEnv(env,net_eval, sample_times, 200, drop_ratio)train_samples += tmpSample#每次sample的长度就代表了采取的步数,登山车里是越小越好。如果是倒立摆,则是越大越好if len(tmpSample) < sample_times * 160:print("good model!save it!")torch.save(net_eval.state_dict(), "goodmodel" + str(goodmodel_idx) + ".pth")goodmodel_idx += 1#dataset里存着最新的不超过4000的样本if len(train_samples) > 4000:train_samples = train_samples[len(tmpSample):len(train_samples)]trainset = RLDataset(train_samples)trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=0,pin_memory=True)TrainNet(net_target, net_eval, trainloader, criterion, optimizer, device, 10, 0.9)if i%50 == 0:PATH = "model/model"+str(i)+".pth"torch.save(net_eval.state_dict(), PATH)env.close()#这一堆是测试看效果用的#PATH = 'model/model42.pth'#net_eval.load_state_dict(torch.load(PATH))#net_target.load_state_dict(torch.load(PATH))#GetSamplesFromEnv(env,net_eval, 20, 200, 0)
  • 自己过了一遍,代码可直接跑通😎,包括模型保存,模型测试,你懂的!

界面展示

在这里插入图片描述

写在最后

十年磨剑,与君共勉!
更多代码:gitee主页:https://gitee.com/GZHzzz
博客主页:CSDN:https://blog.csdn.net/gzhzzaa

  • Fighting!😎

在这里插入图片描述

while True:Go life

在这里插入图片描述

谢谢点赞交流!(❁´◡`❁)

这篇关于【零基础强化学习】100行代码教你实现基于DQN的gym登山车的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711680

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter