【零基础强化学习】100行代码教你实现基于DQN的gym登山车

2024-02-15 14:40

本文主要是介绍【零基础强化学习】100行代码教你实现基于DQN的gym登山车,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于DQN的gym登山车🤔

  • 写在前面
  • show me code, no bb
  • 界面展示
  • 写在最后
    • 谢谢点赞交流!(❁´◡`❁)

更多代码: gitee主页:https://gitee.com/GZHzzz
博客主页: CSDN:https://blog.csdn.net/gzhzzaa

写在前面

作为一个新手,写这个强化学习-基础知识专栏是想和大家分享一下自己强化学习的学习历程,希望大家互相交流一起进步。希望自己在2022年能保证把强化学习基础概念都过一遍,主要是成体系介绍强化学习的基础知识,而且在gitee收集了强化学习经典论文和基于pytorch的经典模型 ,大家一起互相学习啊!可能会有很多错漏,希望大家批评指正!不要高估一年的努力,也不要低估十年的积累,与君共勉!

show me code, no bb

#这是一堆初始化
import gym
import random
import torch
import torch.nn as nn
from torch.utils.data import Dataset
import os
#env = gym.make('CartPole-v0')
env = gym.make('MountainCar-v0') #action = (0,1,2) = (left, no_act, right)
#env = gym.make('Hopper-v3')
print(env.observation_space)
#print(env.action_space)
#简单的线性模型
def mkdir(path):folder = os.path.exists(path)if not folder:                   os.makedirs(path)
def GetModel():#In features:2(state) ,out:3 action qreturn nn.Sequential(nn.Linear(2, 16), nn.LeakyReLU(inplace=True), nn.Linear(16,24),nn.LeakyReLU(inplace=True), nn.Linear(24,3))
#创建数据集
class RLDataset(Dataset):def __init__(self, samples, transform = None, target_transform = None):#samples = [(s,a,r,s_), ...]self.samples = self.transform(samples)def __getitem__(self, index):#if self.transform is not None:#    img = self.transform(img) return self.samples[index]def __len__(self):return len(self.samples)def transform(self, samples):transSamples = []for (s,a,r,s_) in samples:sT = torch.tensor(s,).to(torch.float32)sT_ = torch.tensor(s_).to(torch.float32)transSamples.append((sT, a, r, sT_))return transSamples#采样环境函数,可以设置随机操作的概率。重点在于reward的设计
def GetSamplesFromEnv(env, model, epoch, max_steps, drop_ratio = 0.8):train_samples = []each_sample = Noneenv.reset()observation_new = Noneobservation_old = Nonemodel.eval()for i_episode in range(epoch):observation_new = env.reset()observation_old = env.reset()for t in range(max_steps):env.render()#print(observation)if random.random() > 1-drop_ratio:action = env.action_space.sample()else:inputT = torch.tensor(observation_new).to(torch.float32)action = torch.argmax(model(inputT)).item()#print(action)observation_new, reward, done, info = env.step(action)#print(reward)#We record samples.if t > 0 :#reward += observation_new[0]#if observation_new[0] > -0.35:#    reward += (observation_new[0] + 0.36)*5if observation_new[0] > -0.2:reward += 0.2elif observation_new[0] > -0.15:reward += 0.5elif observation_new[0] > -0.1:reward += 0.7each_sample = (observation_old, action, reward, observation_new)train_samples.append(each_sample)observation_old = observation_newif done:#失败的采样不打印出来if t != 199:print("Episode finished after {} timesteps".format(t+1))breakreturn train_samples
#训练网络。这里可能gather函数比较绕,还有双网络更新比较费解。忽略掉这些,和正常训练循环一样
#gamma是贝尔曼方程里的衰减因子
def TrainNet(net_target, net_eval, trainloader, criterion, optimizer, device, epoch_total, gamma):running_loss = 0.0iter_times = 0net_target.eval()net_eval.train()for epoch in range(epoch_total + 1):if epoch > 0:           print('epoch %d, loss %.5f' % (epoch, running_loss))running_loss = 0.0if epoch == epoch_total: break        for i, data in enumerate(trainloader, 0):if iter_times % 100 == 0:net_target.load_state_dict(net_eval.state_dict())s,a,r,s_ = dataoptimizer.zero_grad()#output = Q_predicted.q_t0 = net_eval(s)q_t1 = net_target(s_).detach()q_t1 = gamma * (r + torch.max(q_t1,dim=1)[0]).to(torch.float32)loss = criterion(q_t1, torch.gather(q_t0, dim=1, index=a.unsqueeze(1)).squeeze(1))loss.sum().backward()optimizer.step()running_loss += loss.item()iter_times += 1net_target.load_state_dict(net_eval.state_dict())    print('Finished Training')
if __name__ == '__main__':mkdir('model')#最后是一大堆主循环device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")net_target, net_eval = GetModel(), GetModel()criterion = nn.MSELoss()optimizer = torch.optim.Adam(net_eval.parameters(),lr=0.01)train_samples = []goodmodel_idx = 0for i in range(300):drop_ratio = 0.8 - 0.0077*isample_times = 10tmpSample = GetSamplesFromEnv(env,net_eval, sample_times, 200, drop_ratio)train_samples += tmpSample#每次sample的长度就代表了采取的步数,登山车里是越小越好。如果是倒立摆,则是越大越好if len(tmpSample) < sample_times * 160:print("good model!save it!")torch.save(net_eval.state_dict(), "goodmodel" + str(goodmodel_idx) + ".pth")goodmodel_idx += 1#dataset里存着最新的不超过4000的样本if len(train_samples) > 4000:train_samples = train_samples[len(tmpSample):len(train_samples)]trainset = RLDataset(train_samples)trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=0,pin_memory=True)TrainNet(net_target, net_eval, trainloader, criterion, optimizer, device, 10, 0.9)if i%50 == 0:PATH = "model/model"+str(i)+".pth"torch.save(net_eval.state_dict(), PATH)env.close()#这一堆是测试看效果用的#PATH = 'model/model42.pth'#net_eval.load_state_dict(torch.load(PATH))#net_target.load_state_dict(torch.load(PATH))#GetSamplesFromEnv(env,net_eval, 20, 200, 0)
  • 自己过了一遍,代码可直接跑通😎,包括模型保存,模型测试,你懂的!

界面展示

在这里插入图片描述

写在最后

十年磨剑,与君共勉!
更多代码:gitee主页:https://gitee.com/GZHzzz
博客主页:CSDN:https://blog.csdn.net/gzhzzaa

  • Fighting!😎

在这里插入图片描述

while True:Go life

在这里插入图片描述

谢谢点赞交流!(❁´◡`❁)

这篇关于【零基础强化学习】100行代码教你实现基于DQN的gym登山车的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711680

相关文章

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

SpringBoot+EasyPOI轻松实现Excel和Word导出PDF

《SpringBoot+EasyPOI轻松实现Excel和Word导出PDF》在企业级开发中,将Excel和Word文档导出为PDF是常见需求,本文将结合​​EasyPOI和​​Aspose系列工具实... 目录一、环境准备与依赖配置1.1 方案选型1.2 依赖配置(商业库方案)二、Excel 导出 PDF

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

使用zip4j实现Java中的ZIP文件加密压缩的操作方法

《使用zip4j实现Java中的ZIP文件加密压缩的操作方法》本文介绍如何通过Maven集成zip4j1.3.2库创建带密码保护的ZIP文件,涵盖依赖配置、代码示例及加密原理,确保数据安全性,感兴趣的... 目录1. zip4j库介绍和版本1.1 zip4j库概述1.2 zip4j的版本演变1.3 zip4

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录