【深度学习】S2 数学基础 P4 微积分(下)偏导数与链式法则

2024-02-15 09:20

本文主要是介绍【深度学习】S2 数学基础 P4 微积分(下)偏导数与链式法则,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 深度学习与微积分
  • 偏导数
  • 链式法则

深度学习与微积分

总结来说,深度学习的核心在于优化;优化的重点在于降低损失值;降低损失值需要通过反向梯度下降;而微积分,判断的就是梯度下降的方向和大小。

铺开来说,深度学习的核心目标是通过优化过程来训练模型,以便在给定输入数据时能够产生准确的预测。而为了评估模型的性能并指导优化过程,我们定义了一个 损失函数。它量化了模型的预测与真实值之间的不一致程度。

优化过程的关键在于找到一组模型参数,使得损失函数的值最小。这通常通过 梯度下降 算法实现,其中 “梯度” 就是损失函数对模型参数的导数。梯度指向损失增加最快的方向,因此,为了最小化损失函数,我们选择与梯度相反的方向进行更新,这就是所谓的 “反向梯度下降”。

在这个过程中,导数(或者说梯度)的重要性在于:

  • 方向:导数指示了损失函数下降最快的方向,即梯度的反方向是损失减少的方向。
  • 大小:导数的绝对值表示了损失函数在该方向上下降的速率,即参数更新的大小。

因此,通过计算损失函数对每个参数的导数(梯度),我们可以调整模型参数,以减少损失函数的值,从而训练出性能更好的模型。而自动微分,使得这个过程变得自动化和高效。开发者可以专注于模型结构和数据处理,而不必手动计算复杂的导数。关于自动微分,将在后续博文单开章节进行阐述。

在本篇文章中,我们将关注于微积分的一些核心概念,特别是 偏导数 和 链式法则 这两个关键原理。


偏导数

深度学习函数依赖于许多变量。在博文微积分(上)中,只单纯讨论了导数与微分之于深度学习的重要性。但是实践上看,我们需要将微分的思想推广到多元函数上。

e . g . e.g. e.g. 假设 y = f ( x 1 , x 2 , . . . , x n ) y = f(x_1, x_2, ..., x_n) y=f(x1,x2,...,xn) 是一个具有 n n n 个变量的函数, y y y 关于第 i i i 个参数 x i x_i xi 的偏导数为:
d y d x i = lim ⁡ h → 0 f ( x 1 , . . . , x i − 1 , x i + h , x i + 1 , . . . , x n ) − f ( x 1 , . . . , x i , . . . , x n ) h \frac {dy} {dx_i}=\lim _{h \to 0} \frac {f(x_1, ..., x_{i-1}, x_i+h, x_{i+1}, ..., x_n) - f(x_1, ..., x_i, ..., x_n)} {h} dxidy=h0limhf(x1,...,xi1,xi+h,xi+1,...,xn)f(x1,...,xi,...,xn)

而为了计算 d y d x i \frac {dy} {dx_i} dxidy,我们可以简单地将 x 1 , . . . , x i − 1 , x i + 1 , . . . , x n x_1, ..., x_{i-1}, x_{i+1}, ..., x_n x1,...,xi1,xi+1,...,xn 看作常数,并计算 y y y 关于 x i x_i xi 的导数。


链式法则

在深度学习中,神经网络由多个层组成,每个层的输出又作为下一层的输入。链式法则允许我们将复杂的导数问题分解为多个简单的导数问题。通过链式法则,我们可以从输出层的损失函数反向传播梯度到网络的每一层,从而计算出每个权重的偏导数。

链式传播简单公式:
d y d x = d y d x d u d x \frac {dy} {dx}=\frac {dy} {dx} \frac {du} {dx} dxdy=dxdydxdu

关于链式法则的实践,将在后续博文中进行展现。


如有任何疑问,请联系或留言。

2024.2.14

这篇关于【深度学习】S2 数学基础 P4 微积分(下)偏导数与链式法则的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/710999

相关文章

R语言中的正则表达式深度解析

《R语言中的正则表达式深度解析》正则表达式即使用一个字符串来描述、匹配一系列某个语法规则的字符串,通过特定的字母、数字及特殊符号的灵活组合即可完成对任意字符串的匹配,:本文主要介绍R语言中正则表达... 目录前言一、正则表达式的基本概念二、正则表达式的特殊符号三、R语言中正则表达式的应用实例实例一:查找匹配

C++ 右值引用(rvalue references)与移动语义(move semantics)深度解析

《C++右值引用(rvaluereferences)与移动语义(movesemantics)深度解析》文章主要介绍了C++右值引用和移动语义的设计动机、基本概念、实现方式以及在实际编程中的应用,... 目录一、右值引用(rvalue references)与移动语义(move semantics)设计动机1

Java利用Spire.Doc for Java实现在模板的基础上创建Word文档

《Java利用Spire.DocforJava实现在模板的基础上创建Word文档》在日常开发中,我们经常需要根据特定数据动态生成Word文档,本文将深入探讨如何利用强大的Java库Spire.Do... 目录1. Spire.Doc for Java 库介绍与安装特点与优势Maven 依赖配置2. 通过替换

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

JavaScript装饰器从基础到实战教程

《JavaScript装饰器从基础到实战教程》装饰器是js中一种声明式语法特性,用于在不修改原始代码的情况下,动态扩展类、方法、属性或参数的行为,本文将从基础概念入手,逐步讲解装饰器的类型、用法、进阶... 目录一、装饰器基础概念1.1 什么是装饰器?1.2 装饰器的语法1.3 装饰器的执行时机二、装饰器的

Java JAR 启动内存参数配置指南(从基础设置到性能优化)

《JavaJAR启动内存参数配置指南(从基础设置到性能优化)》在启动Java可执行JAR文件时,合理配置JVM内存参数是保障应用稳定性和性能的关键,本文将系统讲解如何通过命令行参数、环境变量等方式... 目录一、核心内存参数详解1.1 堆内存配置1.2 元空间配置(MetASPace)1.3 线程栈配置1.

Java枚举类型深度详解

《Java枚举类型深度详解》Java的枚举类型(enum)是一种强大的工具,它不仅可以让你的代码更简洁、可读,而且通过类型安全、常量集合、方法重写和接口实现等特性,使得枚举在很多场景下都非常有用,本文... 目录前言1. enum关键字的使用:定义枚举类型什么是枚举类型?如何定义枚举类型?使用枚举类型:2.

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三