【深度学习】S2 数学基础 P4 微积分(下)偏导数与链式法则

2024-02-15 09:20

本文主要是介绍【深度学习】S2 数学基础 P4 微积分(下)偏导数与链式法则,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 深度学习与微积分
  • 偏导数
  • 链式法则

深度学习与微积分

总结来说,深度学习的核心在于优化;优化的重点在于降低损失值;降低损失值需要通过反向梯度下降;而微积分,判断的就是梯度下降的方向和大小。

铺开来说,深度学习的核心目标是通过优化过程来训练模型,以便在给定输入数据时能够产生准确的预测。而为了评估模型的性能并指导优化过程,我们定义了一个 损失函数。它量化了模型的预测与真实值之间的不一致程度。

优化过程的关键在于找到一组模型参数,使得损失函数的值最小。这通常通过 梯度下降 算法实现,其中 “梯度” 就是损失函数对模型参数的导数。梯度指向损失增加最快的方向,因此,为了最小化损失函数,我们选择与梯度相反的方向进行更新,这就是所谓的 “反向梯度下降”。

在这个过程中,导数(或者说梯度)的重要性在于:

  • 方向:导数指示了损失函数下降最快的方向,即梯度的反方向是损失减少的方向。
  • 大小:导数的绝对值表示了损失函数在该方向上下降的速率,即参数更新的大小。

因此,通过计算损失函数对每个参数的导数(梯度),我们可以调整模型参数,以减少损失函数的值,从而训练出性能更好的模型。而自动微分,使得这个过程变得自动化和高效。开发者可以专注于模型结构和数据处理,而不必手动计算复杂的导数。关于自动微分,将在后续博文单开章节进行阐述。

在本篇文章中,我们将关注于微积分的一些核心概念,特别是 偏导数 和 链式法则 这两个关键原理。


偏导数

深度学习函数依赖于许多变量。在博文微积分(上)中,只单纯讨论了导数与微分之于深度学习的重要性。但是实践上看,我们需要将微分的思想推广到多元函数上。

e . g . e.g. e.g. 假设 y = f ( x 1 , x 2 , . . . , x n ) y = f(x_1, x_2, ..., x_n) y=f(x1,x2,...,xn) 是一个具有 n n n 个变量的函数, y y y 关于第 i i i 个参数 x i x_i xi 的偏导数为:
d y d x i = lim ⁡ h → 0 f ( x 1 , . . . , x i − 1 , x i + h , x i + 1 , . . . , x n ) − f ( x 1 , . . . , x i , . . . , x n ) h \frac {dy} {dx_i}=\lim _{h \to 0} \frac {f(x_1, ..., x_{i-1}, x_i+h, x_{i+1}, ..., x_n) - f(x_1, ..., x_i, ..., x_n)} {h} dxidy=h0limhf(x1,...,xi1,xi+h,xi+1,...,xn)f(x1,...,xi,...,xn)

而为了计算 d y d x i \frac {dy} {dx_i} dxidy,我们可以简单地将 x 1 , . . . , x i − 1 , x i + 1 , . . . , x n x_1, ..., x_{i-1}, x_{i+1}, ..., x_n x1,...,xi1,xi+1,...,xn 看作常数,并计算 y y y 关于 x i x_i xi 的导数。


链式法则

在深度学习中,神经网络由多个层组成,每个层的输出又作为下一层的输入。链式法则允许我们将复杂的导数问题分解为多个简单的导数问题。通过链式法则,我们可以从输出层的损失函数反向传播梯度到网络的每一层,从而计算出每个权重的偏导数。

链式传播简单公式:
d y d x = d y d x d u d x \frac {dy} {dx}=\frac {dy} {dx} \frac {du} {dx} dxdy=dxdydxdu

关于链式法则的实践,将在后续博文中进行展现。


如有任何疑问,请联系或留言。

2024.2.14

这篇关于【深度学习】S2 数学基础 P4 微积分(下)偏导数与链式法则的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/710999

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷