Talk预告 | 香港理工大学计算机系助理教授杨波:无监督2D/3D物体实例分割

本文主要是介绍Talk预告 | 香港理工大学计算机系助理教授杨波:无监督2D/3D物体实例分割,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本期为TechBeat人工智能社区462线上Talk!

北京时间12月14(周三)20:00香港理工大学计算机系助理教授——杨波的Talk将准时在TechBeat人工智能社区开播!

他与大家分享的主题是: “无监督2D/3D物体实例分割”,届时将介绍香港理工vLAR研究组在无监督学习2D/3D物体分割的最新进展。

Talk·信息

主题:无监督2D/3D物体实例分割

嘉宾:香港理工大学计算机系助理教授 杨波

时间:北京时间 12月14日 (周三) 20:00

地点:TechBeat人工智能社区

http://www.techbeat.net/

点击下方链接,即可观看视频

TechBeatTechBeat是荟聚全球华人AI精英的成长社区,每周上新来自顶尖大厂、明星创业公司、国际顶级高校相关专业在读博士的最新研究工作。我们希望为AI人才打造更专业的服务和体验,加速并陪伴其成长。https://www.techbeat.net/talk-info?id=739

Talk·介绍

近年,随着深度学习理论的成熟以及大量人工标注数据集的出现,视觉领域获得前所未有的发展,包括2D/3D物体实例分割等核心任务。然而,目前大多数算法依赖海量人工标注数据训练神经网络,成本极高且模型难以泛化和部署到全新场景。探索无监督学习的新范式成为学界热点及难点。

本talk将介绍香港理工vLAR研究组在无监督学习2D/3D物体分割的最新进展。首先介绍物体分割在二维图形和三维点云的基本背景。其次分析和探究基于单张图片的无监督物体分割方法的局限性。最后介绍一种无监督3D物体分割新方法OGC,其无需任何人工标注,即可从单帧点云分割物体。

Talk·预习资料

  • Paper #1: Promising or Elusive? Unsupervised Object Segmentation from Real-world Single Images, NeurIPS 2022, https://github.com/vLAR-group/UnsupObjSeg

  • Paper #2: OGC: Unsupervised 3D Object Segmentation from Rigid Dynamics of Point Clouds, NeurIPS 2022, https://github.com/vLAR-group/OGC

Talk·提问交流

在Talk界面下的【交流区】参与互动!留下你的打call🤟和问题🙋,和更多小伙伴们共同讨论,被讲者直接翻牌解答!

你的每一次贡献,我们都会给予你相应的i豆积分,还会有惊喜奖励哦!

Talk·嘉宾介绍

杨波

香港理工大学计算机系助理教授

杨波,现为香港理工大学计算机系助理教授,vLAR研究组负责人。2020年9月获牛津大学计算机博士学位。主要研究方向包括:三维视觉、机器学习、机器人等,专注于让智能机器真正理解和重建复杂三维场景,从而最终实现机器智能决策并与环境自主交互。其诸多研究成果发表于TPAMI、IJCV、NeurIPS、CVPR、ICCV、ECCV、ICRA、IROS等国际期刊和会议。多个研究工作被国内外知名行业媒体报道,在学术界和工业界有广泛影响。

主页:

https://yang7879.github.io/

 -The End-

关于TechBeat人工智能社区

TechBeat(www.techbeat.net)隶属于将门创投,是一个荟聚全球华人AI精英的成长社区。

我们希望为AI人才打造更专业的服务和体验,加速并陪伴其学习成长。

期待这里可以成为你学习AI前沿知识的高地,分享自己最新工作的沃土,在AI进阶之路上的升级打怪的根据地!

更多详细介绍>>TechBeat,一个荟聚全球华人AI精英的学习成长社区

这篇关于Talk预告 | 香港理工大学计算机系助理教授杨波:无监督2D/3D物体实例分割的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/709795

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

实例:如何统计当前主机的连接状态和连接数

统计当前主机的连接状态和连接数 在 Linux 中,可使用 ss 命令来查看主机的网络连接状态。以下是统计当前主机连接状态和连接主机数量的具体操作。 1. 统计当前主机的连接状态 使用 ss 命令结合 grep、cut、sort 和 uniq 命令来统计当前主机的 TCP 连接状态。 ss -nta | grep -v '^State' | cut -d " " -f 1 | sort |

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

Java Websocket实例【服务端与客户端实现全双工通讯】

Java Websocket实例【服务端与客户端实现全双工通讯】 现很多网站为了实现即时通讯,所用的技术都是轮询(polling)。轮询是在特定的的时间间隔(如每1秒),由浏览器对服务器发 出HTTP request,然后由服务器返回最新的数据给客服端的浏览器。这种传统的HTTP request 的模式带来很明显的缺点 – 浏 览器需要不断的向服务器发出请求,然而HTTP

SAM2POINT:以zero-shot且快速的方式将任何 3D 视频分割为视频

摘要 我们介绍 SAM2POINT,这是一种采用 Segment Anything Model 2 (SAM 2) 进行零样本和快速 3D 分割的初步探索。 SAM2POINT 将任何 3D 数据解释为一系列多向视频,并利用 SAM 2 进行 3D 空间分割,无需进一步训练或 2D-3D 投影。 我们的框架支持各种提示类型,包括 3D 点、框和掩模,并且可以泛化到不同的场景,例如 3D 对象、室

828华为云征文|华为云Flexus X实例docker部署rancher并构建k8s集群

828华为云征文|华为云Flexus X实例docker部署rancher并构建k8s集群 华为云最近正在举办828 B2B企业节,Flexus X实例的促销力度非常大,特别适合那些对算力性能有高要求的小伙伴。如果你有自建MySQL、Redis、Nginx等服务的需求,一定不要错过这个机会。赶紧去看看吧! 什么是华为云Flexus X实例 华为云Flexus X实例云服务是新一代开箱即用、体

机器学习之监督学习(三)神经网络

机器学习之监督学习(三)神经网络基础 0. 文章传送1. 深度学习 Deep Learning深度学习的关键特点深度学习VS传统机器学习 2. 生物神经网络 Biological Neural Network3. 神经网络模型基本结构模块一:TensorFlow搭建神经网络 4. 反向传播梯度下降 Back Propagation Gradient Descent模块二:激活函数 activ

LLVM入门2:如何基于自己的代码生成IR-LLVM IR code generation实例介绍

概述 本节将通过一个简单的例子来介绍如何生成llvm IR,以Kaleidoscope IR中的例子为例,我们基于LLVM接口构建一个简单的编译器,实现简单的语句解析并转化为LLVM IR,生成对应的LLVM IR部分,代码如下,文件名为toy.cpp,先给出代码,后面会详细介绍每一步分代码: #include "llvm/ADT/APFloat.h"#include "llvm/ADT/S