线性代数的本质 2 线性组合、张成的空间、基

2024-02-14 04:52

本文主要是介绍线性代数的本质 2 线性组合、张成的空间、基,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一种新的看待方式 

        对于一个向量,比如说\begin{bmatrix} 3\\ -2 \end{bmatrix},如何看待其中的3和-2?

        一开始,我们往往将其看作长度(从向量的首走到尾部,分别在x和y上走的长度)。

        在有了数乘后,我们可以将其视为对向量进行缩放的标量,缩放的对象是两个特殊的向量\overrightarrow{i}=\begin{bmatrix} 1\\ 0 \end{bmatrix} 和 \overrightarrow{j}=\begin{bmatrix} 0\\ 1 \end{bmatrix}这两个向量也被称为xy坐标系的基向量。

        也就是有:\begin{bmatrix} 3\\ -2 \end{bmatrix}=3\overrightarrow{i} + (-2)\overrightarrow{j}

        这种把向量看作向量的数乘的和的思想正体现了数乘和相加是线性代数的核心。

         这里很自然引出一个问题,可不可以换另外的向量作基向量?

        比如这里我们用\begin{bmatrix} 1\\ 2 \end{bmatrix} 和 \begin{bmatrix} 3\\ -1 \end{bmatrix},想象一下任意缩放这两个向量,然后相加,得到不同的结果。

        感性上,我们可以得到所有二维平面中的向量;实际上,确实如此。

        具体为什么,以及在这样的基下,坐标和向量的关系,可以暂且往后放。目前需要认识到的是,每当我们用数字描述向量时,它都依赖于我们正在使用的基。

线性组合

       两个数乘向量的和被称为这两个向量的线性组合。在xy坐标系,任意取两个向量进行线性组合时,组合出的所有向量实际上有3种情况:

  •         两个向量都是零向量时,只能得到零向量。
  •         两个向量恰好在一条直线上时,得到的向量终点也全在这条直线上。
  •         其余情况,能得到整个平面所有向量。

张成的空间  

        这里又引入一点术语:

        所有可以表示为给定向量线性组合的向量的集合,称为给定向量张成的空间。

        所以,对于大多数二维向量来说,它们张成的空间是整个二维平面的向量;但当共线时,它们张成的空间就是终点落在一条直线上的向量的集合。

        我们可以总结,张成的空间实际上就是在问:仅仅通过向量加法与向量数乘这两种基础运算,能获得的所有向量的集合是什么?

向量与点

        由于在线性代数中,向量的起点总是在原点,因此可以直接用终点坐标来表示向量,即用点来表示向量。

线性相关/无关

        在三维坐标系中,先取两个不共线的向量,两者张成以一个平面,然后再取一个向量,如果没有落在这个平面,那么三者的线性组合可以得到整个三维空间的所有向量。

        而当这第3个向量恰好落在前两个向量张成的平面里时,三者张成的空间没有变化,至少有一个向量对张成的空间没有贡献,可以删去而不减小张成的空间,这种情况称它们是线性相关的前面两个向量共线的情况也是如此。

        另一种对于线性相关等效的描述是:其中一个向量能被其他向量的线性组合表示(因为这个向量已经落在它们张成的空间中了)

        而如果每一个向量都不是多余的,都给张成的空间增添了新的维度,那么我们称它们线性无关

        基(basis)是什么在前文已经提到过了,其严格定义是:

向量空间的一组基是张成该空间的一个线性无关的向量集

这篇关于线性代数的本质 2 线性组合、张成的空间、基的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/707544

相关文章

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

【高等代数笔记】线性空间(一到四)

3. 线性空间 令 K n : = { ( a 1 , a 2 , . . . , a n ) ∣ a i ∈ K , i = 1 , 2 , . . . , n } \textbf{K}^{n}:=\{(a_{1},a_{2},...,a_{n})|a_{i}\in\textbf{K},i=1,2,...,n\} Kn:={(a1​,a2​,...,an​)∣ai​∈K,i=1,2,...,n

win7系统中C盘空间缩水的有效处理方法

一、深度剖析和完美解决   1、 休眠文件 hiberfil.sys :   该文件在C盘根目录为隐藏的系统文件,隐藏的这个hiberfil.sys文件大小正好和自己的物理内存是一致的,当你让电脑进入休眠状态时,Windows 7在关闭系统前将所有的内存内容写入Hiberfil.sys文件。   而后,当你重新打开电脑,操作系统使用Hiberfil.sys把所有信息放回内存,电脑

线性代数|机器学习-P35距离矩阵和普鲁克问题

文章目录 1. 距离矩阵2. 正交普鲁克问题3. 实例说明 1. 距离矩阵 假设有三个点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1​,x2​,x3​,三个点距离如下: ∣ ∣ x 1 − x 2 ∣ ∣ 2 = 1 , ∣ ∣ x 2 − x 3 ∣ ∣ 2 = 1 , ∣ ∣ x 1 − x 3 ∣ ∣ 2 = 6 \begin{equation} ||x

求空间直线与平面的交点

若直线不与平面平行,将存在交点。如下图所示,已知直线L过点m(m1,m2,m3),且方向向量为VL(v1,v2,v3),平面P过点n(n1,n2,n3),且法线方向向量为VP(vp1,vp2,vp3),求得直线与平面的交点O的坐标(x,y,z): 将直线方程写成参数方程形式,即有: x = m1+ v1 * t y = m2+ v2 * t

[Linux]:环境变量与进程地址空间

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:Linux学习 贝蒂的主页:Betty’s blog 1. 环境变量 1.1 概念 **环境变量(environment variables)**一般是指在操作系统中用来指定操作系统运行环境的一些参数,具有全局属性,可以被子继承继承下去。 如:我们在编写C/C++代码的时,在链接的时候,我们并不知

【编程底层原理】方法区、永久代和元空间之间的关系

Java虚拟机(JVM)中的内存布局经历了几个版本的变更,其中方法区、永久代和元空间是这些变更中的关键概念。以下是它们之间的关系: 一、方法区: 1、方法区是JVM规范中定义的一个概念,它用于存储类信息、常量、静态变量、即时编译器编译后的代码等数据。 3、它是JVM运行时数据区的一部分,与堆内存一样,是所有线程共享的内存区域。 二、永久代(PermGen): 1、在Java SE 7之前,

【线性代数】正定矩阵,二次型函数

本文主要介绍正定矩阵,二次型函数,及其相关的解析证明过程和各个过程的可视化几何解释(深蓝色字体)。 非常喜欢清华大学张颢老师说过的一段话:如果你不能用可视化的方式看到事情的结果,那么你就很难对这个事情有认知,认知就是直觉,解析的东西可以让你理解,但未必能让你形成直觉,因为他太反直觉了。 正定矩阵 定义 给定一个大小为 n×n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 ,有 恒成

算法复杂度 —— 数据结构前言、算法效率、时间复杂度、空间复杂度、常见复杂度对比、复杂度算法题(旋转数组)

目录 一、数据结构前言 1、数据结构 2、算法 3、学习方法 二、 算法效率 引入概念:算法复杂度  三、时间复杂度 1、大O的渐进表示法 2、时间复杂度计算示例  四、空间复杂度 计算示例:空间复杂度 五、常见复杂度对比 六、复杂度算法题(旋转数组) 1、思路1 2、思路2 3、思路3 一、数据结构前言 1、数据结构         数据结构(D

Oracle 查看表空间名称及大小和删除表空间及数据文件方法

--1、查看表空间的名称及大小  SELECT t.tablespace_name, round(SUM(bytes / (1024 * 1024)), 0) ts_size  FROM dba_tablespaces t, dba_data_files d  WHERE t.tablespace_name = d.tablespace_name  GROUP BY t.tablespace_na