代码随想录算法训练营Day56|583. 两个字符串的删除操作、72. 编辑距离

本文主要是介绍代码随想录算法训练营Day56|583. 两个字符串的删除操作、72. 编辑距离,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

583. 两个字符串的删除操作

前言

思路

算法实现 

法二

72. 编辑距离

前言

思路

算法实现 

总结


583. 两个字符串的删除操作

题目链接

文章链接

前言

        本题与上一题不同的子序列相比,变化就是两个字符串都可以进行删除操作了。

思路

         利用动规五部曲进行分析:

1.确定dp数组及其下标的含义:

        dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。

2.确定递推公式:

        递推公式的推导与前几题大致类似,都有分两种情况进行讨论:

  • 当word1[i - 1] 与 word2[j - 1]相同的时候;
  • 当word1[i - 1] 与 word2[j - 1]不相同的时候

        对于word1[i - 1] 与 word2[j - 1]相同时,dp[i][j] = dp[i - 1][j - 1];

        当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

        情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1,

        情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1,

        情况三,同时删word1[i - 1]和word2[j - 1], 操作的最少次数为dp[i - 1][j - 1] + 2;

        最终结果是取三种情况的最小值,dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

3.初始化dp数组:

        从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。

        当word2为空字符串时,word1字符串的长度为i,因此要删i次才能与空字符串word2相等,所以dp[i][0]的初值为i,同理dp[0][j]的初值为j;

4.确定遍历顺序:

        从递推公式 dp[i][j] = min(dp[i - 1][j - 1] + 2, min(dp[i - 1][j], dp[i][j - 1]) + 1); 和dp[i][j] = dp[i - 1][j - 1]可以看出dp[i][j]都是根据左上方、正上方、正左方推出来的。

        所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

5.打印dp数组:

        以word1:"sea",word2:"eat"为例,推导dp数组状态图如下:

算法实现 

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1, vector<int> (word2.size() + 1, 0));for (int i = 1; i <= word1.size(); i++) dp[i][0] = i;for (int j = 1; j <= word2.size(); j++) dp[0][j] = j;for (int i = 1; i <= word1.size(); i++) {for (int j = 1; j <= word2.size(); j++) {if (word1[i - 1] == word2[j - 1]) dp[i][j] = dp[i - 1][j - 1];else {dp[i][j] = min(dp[i - 1][j] + 1, min(dp[i][j - 1] + 1, dp[i - 1][j - 1] + 2));}}}return dp[word1.size()][word2.size()];}
};

法二

        利用求最长公共子序列的思想,两个字符串要删除的部分就是最长公共子序列之外的部分。

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1, vector<int> (word2.size() + 1, 0));for (int i = 1; i <= word1.size(); i++) {for (int j = 1; j <= word2.size(); j++) {if (word1[i - 1] == word2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}return word1.size() + word2.size() - dp[word1.size()][word2.size()] * 2;}
};

72. 编辑距离

题目链接

文章链接

前言

         前几题都是为了本题做铺垫,有了前面几题的学习接触本题就不会觉得非常困难,主要难点还是在于递推公式的确定,尤其是当两个字符串比较的位置字符不相等时递推公式的确定。

思路

         还是利用动规五部曲进行分析:

1.确定dp数组及其下标的含义:

        dp[i][j]:以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。

2.确定递推公式:

        依然是分两种大情况进行讨论:

  • 当word1[i - 1] 与 word2[j - 1]相同;
  • 当word1[i - 1] 与 word2[j - 1]不相同;

        当word1[i - 1] 与 word2[j - 1]相同时,不需要进行额外的操作(编辑距离),和word1以i - 2为结尾,word2以就j - 2为结尾要操作的次数一样,即dp[i][j] = dp[i - 1][j - 1];

        而当word1[i - 1] 与 word2[j - 1]不相同时,要分别考虑删、增、换三种不同的情况;

        增删元素其实本质上是一样的,在word1中增加元素和在word2中删除元素起到的效果相同,此时dp[i][j] = dp[i - 1][j] + 1(删word1中的元素),或者dp[i][j] = dp[i][j - 1] + 1(删除word2中的元素);

        替换元素时,替换word[i - 1]元素使其与word2[j - 1]相等(也可以倒过来),此时dp[i][j] = dp[i - 1][j - 1] + 1;

3.dp数组初始化

        与上题一样dp[i][0] = i,dp[0][j] = j,只需要删除完所有字符就能与另一个空字符串相等;

4.确定遍历顺序:

        从递推公式可以看出,dp[i][j]是依赖左方,上方和左上方元素的,如图:

        

5.打印dp数组:

        以示例1为例,输入:word1 = "horse", word2 = "ros"为例,dp矩阵状态图如下:

         

算法实现 

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1, vector<int> (word2.size() + 1, 0));for (int i = 1; i <= word1.size(); i++) dp[i][0] = i;for (int j = 1; j <= word2.size(); j++) dp[0][j] = j;for (int i = 1; i <= word1.size(); i++) {for (int j = 1; j <= word2.size(); j++) {if (word1[i - 1] == word2[j - 1]) dp[i][j] = dp[i - 1][j - 1];else dp[i][j] = min(dp[i - 1][j] + 1, min(dp[i][j - 1] + 1, dp[i - 1][j - 1] + 1));}}return dp[word1.size()][word2.size()];}
};

总结

        今天的两道题是前面几道题的深化,循序渐进。

这篇关于代码随想录算法训练营Day56|583. 两个字符串的删除操作、72. 编辑距离的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/706818

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3