本文主要是介绍[树] 树的基本操作(孩子兄弟结点CSTree | 二叉树存储) -- 叶子结点个数|树的度|树的深度|打印树的边(严蔚敏《数据结构》6.59-6.62),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
题目来源:严蔚敏《数据结构》C语言版本习题册 6.59-6.62
【题目】6.59 编写算法完成下列操作:无重复地输出以孩子-兄弟链表存储的树T中所有的边。输出的形式为(k1, k2), …, (ki, kj), …,其中,ki和kj为树结点中的结点标识。
【题目】6.60 试编写算法,对一棵以孩子-兄弟链表表示的树统计叶子的个数。
【题目】6.61 试编写算法,求一棵以孩子-兄弟链表表示的树的度。
【题目】6.62 对以孩子-兄弟链表表示的树编写计算树的深度的算法
【答案】
/*-------------------|6.59 输出T的所有边 |-------------------*/
void TreePrintEdge(CSTree T) {CSNode *p;for (p=T->firstchild; p; p=p->nextsibling) {printf("(%c,%c)\n", T->data, p->data); //输出T的孩子TreePrintEdge(p); //输出p的孩子}
}/*-------------------------|6.60 统计叶子结点的个数 |-------------------------*/
int TreeLeafCnt(CSTree T) {// 树的叶子结点-->没有孩子int ret=0;CSNode *p;if (!T) return 0;else if (!T->firstchild) return 1;else {for (p=T->firstchild; p; p=p->nextsibling) ret += TreeLeafCnt(p);return ret;}
}/*-------------------------|6.61 求树的度 |-------------------------*/
int TreeDegree(CSTree T) {// 最大的孩子数int max=-1;int cnt=0;CSNode *child;if (!T) return -1; //空树else if (!T->firstchild) return 0; //只有一个根结点,度为0else {for (cnt=0,child=T->firstchild; child; child=child->nextsibling) cnt++; //求自己的度max = cnt; //当前的最大值for (child=T->firstchild; child; child=child->nextsibling) {cnt = TreeDegree(child);if (cnt>max) max=cnt;}return max;}
}/*-------------------------|6.62 求树的深度 |-------------------------*/
int TreeDepth(CSTree T) {int h1,h2;if (!T) return 0;else {h1 = TreeDepth(T->firstchild)+1; //T孩子的深度+1h2 = TreeDepth(T->nextsibling); //T兄弟的深度return h1>h2 ? h1 : h2;}
}
【完整代码】
/*-------------------|树-孩子兄弟表达法 |-------------------*/
#include<stdio.h>
#include<stdlib.h>
#include<string.h>#ifndef BASE
#define BASE
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
#define OVERFLOW -2
typedef int Status;
typedef int bool;
#endif#define TElemType char
typedef struct CSNode{TElemType data;struct CSNode *firstchild, *nextsibling;
}CSNode, *CSTree;/*-------------------|6.59 输出T的所有边 |-------------------*/
void TreePrintEdge(CSTree T) {CSNode *p;for (p=T->firstchild; p; p=p->nextsibling) {printf("(%c,%c)\n", T->data, p->data); //输出T的孩子TreePrintEdge(p); //输出p的孩子}
}/*-------------------------|6.60 统计叶子结点的个数 |-------------------------*/
int TreeLeafCnt(CSTree T) {// 树的叶子结点-->没有孩子int ret=0;CSNode *p;if (!T) return 0;else if (!T->firstchild) return 1;else {for (p=T->firstchild; p; p=p->nextsibling) ret += TreeLeafCnt(p);return ret;}
}/*-------------------------|6.61 求树的度 |-------------------------*/
int TreeDegree(CSTree T) {// 最大的孩子数int max=-1;int cnt=0;CSNode *child;if (!T) return -1; //空树else if (!T->firstchild) return 0; //只有一个根结点,度为0else {for (cnt=0,child=T->firstchild; child; child=child->nextsibling) cnt++; //求自己的度max = cnt; //当前的最大值for (child=T->firstchild; child; child=child->nextsibling) {cnt = TreeDegree(child);if (cnt>max) max=cnt;}return max;}
}/*-------------------------|6.62 求树的深度 |-------------------------*/
int TreeDepth(CSTree T) {int h1,h2;if (!T) return 0;else {h1 = TreeDepth(T->firstchild)+1; //T孩子的深度+1h2 = TreeDepth(T->nextsibling); //T兄弟的深度return h1>h2 ? h1 : h2;}
}/*---------------------------------|6.66 双亲表示法-->孩子兄弟表达式|---------------------------------*/
#define MAX_TREE_SIZE 50typedef struct PTNode{TElemType data;int parent; //双亲的位置域
}PTNode;
typedef struct{PTNode nodes[MAX_TREE_SIZE];int r,n;
}PTree;
CSTree CreateCSTreeByPTree(PTree T) {CSNode *tmp[MAX_TREE_SIZE]; //创建一个辅助的数组,仿照PTree结点的位置存放CSNode *p, *q;int i,parent;if (T.n<=0) return NULL;for (i=0; i<T.n; i++) { //双亲表按层序存储//创建新结点p = (CSNode *)malloc(sizeof(CSNode)); if(!p) exit(OVERFLOW);//赋值p->data = T.nodes[i].data;p->firstchild=p->nextsibling=NULL;//连接parent=T.nodes[i].parent; //父亲if (parent!=-1) { //不是根结点if (tmp[parent]->firstchild==NULL) tmp[parent]->firstchild=p; //第一个孩子else { //不是第一个孩子for (q=tmp[parent]->firstchild; q->nextsibling; q=q->nextsibling) ; //找到最后一个孩子q->nextsibling = p; //连接}}tmp[i]=p;}return tmp[0];
}int main() {PTree PT;CSTree CST;int cnt;PT.n=10;PT.r=0;PT.nodes[0].data='R';PT.nodes[0].parent=-1;PT.nodes[1].data='A';PT.nodes[1].parent=0;PT.nodes[2].data='B';PT.nodes[2].parent=0;PT.nodes[3].data='C';PT.nodes[3].parent=0;PT.nodes[4].data='D';PT.nodes[4].parent=1;PT.nodes[5].data='E';PT.nodes[5].parent=1;PT.nodes[6].data='F';PT.nodes[6].parent=3;PT.nodes[7].data='G';PT.nodes[7].parent=6;PT.nodes[8].data='H';PT.nodes[8].parent=6;PT.nodes[9].data='I';PT.nodes[9].parent=6;CST = CreateCSTreeByPTree(PT); // 6.66 双亲表示法-->孩子兄弟表达式TreePrintEdge(CST); // 6.59 以(F,C)输出 cnt = TreeLeafCnt(CST); //6.60 叶子结点个数printf("TreeLeafCnt:%d\n", cnt);cnt = TreeDegree(CST); //6.61 树的度printf("TreeDegree:%d\n", cnt);cnt = TreeDepth(CST); //6.62 树的深度printf("TreeDepth:%d\n", cnt);return 0;
}
这篇关于[树] 树的基本操作(孩子兄弟结点CSTree | 二叉树存储) -- 叶子结点个数|树的度|树的深度|打印树的边(严蔚敏《数据结构》6.59-6.62)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!