[树] 树的基本操作(孩子兄弟结点CSTree | 二叉树存储) -- 叶子结点个数|树的度|树的深度|打印树的边(严蔚敏《数据结构》6.59-6.62)

本文主要是介绍[树] 树的基本操作(孩子兄弟结点CSTree | 二叉树存储) -- 叶子结点个数|树的度|树的深度|打印树的边(严蔚敏《数据结构》6.59-6.62),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目来源:严蔚敏《数据结构》C语言版本习题册 6.59-6.62

【题目】6.59 编写算法完成下列操作:无重复地输出以孩子-兄弟链表存储的树T中所有的边。输出的形式为(k1, k2), …, (ki, kj), …,其中,ki和kj为树结点中的结点标识。
【题目】6.60 试编写算法,对一棵以孩子-兄弟链表表示的树统计叶子的个数。
【题目】6.61 试编写算法,求一棵以孩子-兄弟链表表示的树的度。
【题目】6.62 对以孩子-兄弟链表表示的树编写计算树的深度的算法

【答案】

/*-------------------|6.59 输出T的所有边 |-------------------*/
void TreePrintEdge(CSTree T) {CSNode *p;for (p=T->firstchild; p; p=p->nextsibling) {printf("(%c,%c)\n", T->data, p->data); //输出T的孩子TreePrintEdge(p); //输出p的孩子}
}/*-------------------------|6.60 统计叶子结点的个数 |-------------------------*/
int TreeLeafCnt(CSTree T) {// 树的叶子结点-->没有孩子int ret=0;CSNode *p;if (!T) return 0;else if (!T->firstchild) return 1;else {for (p=T->firstchild; p; p=p->nextsibling) ret += TreeLeafCnt(p);return ret;}
}/*-------------------------|6.61 求树的度           |-------------------------*/
int TreeDegree(CSTree T) {// 最大的孩子数int max=-1;int cnt=0;CSNode *child;if (!T) return -1; //空树else if (!T->firstchild) return 0; //只有一个根结点,度为0else {for (cnt=0,child=T->firstchild; child; child=child->nextsibling) cnt++; //求自己的度max = cnt; //当前的最大值for (child=T->firstchild; child; child=child->nextsibling) {cnt = TreeDegree(child);if (cnt>max) max=cnt;}return max;}
}/*-------------------------|6.62 求树的深度         |-------------------------*/
int TreeDepth(CSTree T) {int h1,h2;if (!T) return 0;else {h1 = TreeDepth(T->firstchild)+1; //T孩子的深度+1h2 = TreeDepth(T->nextsibling); //T兄弟的深度return h1>h2 ? h1 : h2;}
}

【完整代码】

/*-------------------|树-孩子兄弟表达法 |-------------------*/
#include<stdio.h>
#include<stdlib.h>
#include<string.h>#ifndef BASE
#define BASE
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
#define OVERFLOW -2
typedef int Status;
typedef int bool;
#endif#define TElemType char
typedef struct CSNode{TElemType data;struct CSNode *firstchild, *nextsibling;
}CSNode, *CSTree;/*-------------------|6.59 输出T的所有边 |-------------------*/
void TreePrintEdge(CSTree T) {CSNode *p;for (p=T->firstchild; p; p=p->nextsibling) {printf("(%c,%c)\n", T->data, p->data); //输出T的孩子TreePrintEdge(p); //输出p的孩子}
}/*-------------------------|6.60 统计叶子结点的个数 |-------------------------*/
int TreeLeafCnt(CSTree T) {// 树的叶子结点-->没有孩子int ret=0;CSNode *p;if (!T) return 0;else if (!T->firstchild) return 1;else {for (p=T->firstchild; p; p=p->nextsibling) ret += TreeLeafCnt(p);return ret;}
}/*-------------------------|6.61 求树的度           |-------------------------*/
int TreeDegree(CSTree T) {// 最大的孩子数int max=-1;int cnt=0;CSNode *child;if (!T) return -1; //空树else if (!T->firstchild) return 0; //只有一个根结点,度为0else {for (cnt=0,child=T->firstchild; child; child=child->nextsibling) cnt++; //求自己的度max = cnt; //当前的最大值for (child=T->firstchild; child; child=child->nextsibling) {cnt = TreeDegree(child);if (cnt>max) max=cnt;}return max;}
}/*-------------------------|6.62 求树的深度         |-------------------------*/
int TreeDepth(CSTree T) {int h1,h2;if (!T) return 0;else {h1 = TreeDepth(T->firstchild)+1; //T孩子的深度+1h2 = TreeDepth(T->nextsibling); //T兄弟的深度return h1>h2 ? h1 : h2;}
}/*---------------------------------|6.66 双亲表示法-->孩子兄弟表达式|---------------------------------*/
#define MAX_TREE_SIZE 50typedef struct PTNode{TElemType data;int parent; //双亲的位置域
}PTNode;
typedef struct{PTNode nodes[MAX_TREE_SIZE];int r,n;
}PTree;
CSTree CreateCSTreeByPTree(PTree T) {CSNode *tmp[MAX_TREE_SIZE]; //创建一个辅助的数组,仿照PTree结点的位置存放CSNode *p, *q;int i,parent;if (T.n<=0) return NULL;for (i=0; i<T.n; i++) { //双亲表按层序存储//创建新结点p = (CSNode *)malloc(sizeof(CSNode)); if(!p) exit(OVERFLOW);//赋值p->data = T.nodes[i].data;p->firstchild=p->nextsibling=NULL;//连接parent=T.nodes[i].parent; //父亲if (parent!=-1) { //不是根结点if (tmp[parent]->firstchild==NULL) tmp[parent]->firstchild=p; //第一个孩子else { //不是第一个孩子for (q=tmp[parent]->firstchild; q->nextsibling; q=q->nextsibling) ; //找到最后一个孩子q->nextsibling = p; //连接}}tmp[i]=p;}return tmp[0];
}int main() {PTree PT;CSTree CST;int cnt;PT.n=10;PT.r=0;PT.nodes[0].data='R';PT.nodes[0].parent=-1;PT.nodes[1].data='A';PT.nodes[1].parent=0;PT.nodes[2].data='B';PT.nodes[2].parent=0;PT.nodes[3].data='C';PT.nodes[3].parent=0;PT.nodes[4].data='D';PT.nodes[4].parent=1;PT.nodes[5].data='E';PT.nodes[5].parent=1;PT.nodes[6].data='F';PT.nodes[6].parent=3;PT.nodes[7].data='G';PT.nodes[7].parent=6;PT.nodes[8].data='H';PT.nodes[8].parent=6;PT.nodes[9].data='I';PT.nodes[9].parent=6;CST = CreateCSTreeByPTree(PT); // 6.66  双亲表示法-->孩子兄弟表达式TreePrintEdge(CST); // 6.59 以(F,C)输出 cnt = TreeLeafCnt(CST); //6.60 叶子结点个数printf("TreeLeafCnt:%d\n", cnt);cnt = TreeDegree(CST); //6.61 树的度printf("TreeDegree:%d\n", cnt);cnt = TreeDepth(CST); //6.62 树的深度printf("TreeDepth:%d\n", cnt);return 0;
}

这篇关于[树] 树的基本操作(孩子兄弟结点CSTree | 二叉树存储) -- 叶子结点个数|树的度|树的深度|打印树的边(严蔚敏《数据结构》6.59-6.62)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/705514

相关文章

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

MySQL之InnoDB存储引擎中的索引用法及说明

《MySQL之InnoDB存储引擎中的索引用法及说明》:本文主要介绍MySQL之InnoDB存储引擎中的索引用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录1、背景2、准备3、正篇【1】存储用户记录的数据页【2】存储目录项记录的数据页【3】聚簇索引【4】二

MySQL之InnoDB存储页的独立表空间解读

《MySQL之InnoDB存储页的独立表空间解读》:本文主要介绍MySQL之InnoDB存储页的独立表空间,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、独立表空间【1】表空间大小【2】区【3】组【4】段【5】区的类型【6】XDES Entry区结构【

SQLite3 在嵌入式C环境中存储音频/视频文件的最优方案

《SQLite3在嵌入式C环境中存储音频/视频文件的最优方案》本文探讨了SQLite3在嵌入式C环境中存储音视频文件的优化方案,推荐采用文件路径存储结合元数据管理,兼顾效率与资源限制,小文件可使用B... 目录SQLite3 在嵌入式C环境中存储音频/视频文件的专业方案一、存储策略选择1. 直接存储 vs

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

postgresql数据库基本操作及命令详解

《postgresql数据库基本操作及命令详解》本文介绍了PostgreSQL数据库的基础操作,包括连接、创建、查看数据库,表的增删改查、索引管理、备份恢复及退出命令,适用于数据库管理和开发实践,感兴... 目录1. 连接 PostgreSQL 数据库2. 创建数据库3. 查看当前数据库4. 查看所有数据库