【深度学习】S1 预备知识 P2 数据预处理

2024-02-13 07:20

本文主要是介绍【深度学习】S1 预备知识 P2 数据预处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 准备工作
  • 创建数据集
  • 读取数据集
  • 处理缺失值
    • 处理连续数据缺失值
    • 处理离散数据缺失值
  • 转换为张量格式

在应用深度学习技术解决实际问题时,数据的预处理步骤至关重要。在 Python 的各种数据分析工具中,我们选择了 pandas 库来进行这一工作,因为它能与张量兼容。在本篇博文中,我们将概述如何使用 pandas 对原始数据进行预处理,并将其转换成张量格式。


准备工作

本节博文通过调用 Python Pandas 库实现操作,需要读者预安装完成 Pandas 包:

conda install pandas
pip install pandas

创建数据集

如果读者没有初始数据集,可以通过 write 函数创建 csv 数据集。

import osos.makedirs(os.path.join('..', 'data'), exist_ok=True)
data_file = os.path.join('..', 'data', 'house_tiny.csv')
with open(data_file, 'w') as f:f.write('NumRooms,Alley,Price\n')f.write('NA,Pave,127500\n')f.write('2,NA,106000\n')f.write('4,NA,178100\n')f.write('NA,NA,140000\n')

读取数据集

读取数据集,我们通过导入 pandas 并调用 read_csv 函数。上述数据集 house_tiny.csv 有四行三列,其中每行描述了房间数量 (NumRooms) ,巷子类型 (Alley) 以及房间价格 (Price);

import os
import pandas as pddata_file = os.path.join('..', 'data', 'house_tiny.csv')
data = pd.read_csv(data_file)
print(data)
   NumRooms Alley   Price
0       NaN  Pave  127500
1       2.0   NaN  106000
2       4.0   NaN  178100
3       NaN   NaN  140000

至此,我们已经成功读取到了数据集 house_tiny.csv 中的数据。然而在读取到的结果中,我们注意到存在大量的 NaN 值,这些值代表着数据的缺失。下面将阐述数据缺失的处理办法。


处理缺失值

处理数据缺失的常见方法包括插值法和数据删除法。在插值法中,我们会用一个估计的数值来填补缺失的数据,其中一种常见的插值策略是利用周围非缺失数据的平均值来估计缺失值。然而,处理连续数据和离散数据的缺失值时,我们需要采用不同的策略。

处理连续数据缺失值

首先,以及房间数量(NumRooms)为例,我们将利用周围非缺失数据的平均值来估计缺失值。在这里,我们使用 mean() 函数。

numRooms = data.iloc[:, 0]
print(numRooms)
numRooms = numRooms.fillna(numRooms.mean())
print(numRooms)
0    NaN
1    2.0
2    4.0
3    NaN
Name: NumRooms, dtype: float64
0    3.0
1    2.0
2    4.0
3    3.0
Name: NumRooms, dtype: float64

处理离散数据缺失值

在对离散数据处理缺失值时,我们将 NaN 视作一个独立的类别。以“巷子类型”(Alley)为例,这一列只有两种可能的值:“Pave” 和 NaN。

借助 pandas 库,我们可以把这个列拆分成两列:“Pave” 和 “NaN”。在拆分后的两列中,如果巷子类型是 “Pave”,那么 “Pave” 列的值为 1,而 “NaN” 列的值为 0 ;如果巷子类型是 NaN,则反之。

为了实现这一点,我们使用了 get_dummies() 函数,并通过设置 dummy_na 参数来决定是否创建一个代表 NaN 的额外列。

alley = data.iloc[:, 1]
print(alley)
alley = pd.get_dummies(alley, dummy_na=True)
print(alley)
0    Pave
1     NaN
2     NaN
3     NaN
Name: Alley, dtype: objectPave    NaN
0   True  False
1  False   True
2  False   True
3  False   True

如上,我们将数据集 house_tiny.csv 中缺失的连续数据(房间数量)、离散数据(巷子类型)处理完成。


转换为张量格式

在对数据集处理完缺失值后,我们将其转换成张量格式。

完整代码如下:

import os
import pandas as pd
import torchdata_file = os.path.join('..', 'data', 'house_tiny.csv')
data = pd.read_csv(data_file)inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
# print(inputs, outputs)
inputs['NumRooms'] = inputs['NumRooms'].fillna(inputs['NumRooms'].mean())
inputs['Alley'] = pd.get_dummies(inputs['Alley'], dummy_na=False)
# print(inputs)
X = torch.tensor(inputs.to_numpy(dtype=float))
y = torch.tensor(outputs.to_numpy(dtype=float))\print(X)
print(y)
tensor([[3., 1.],[2., 0.],[4., 0.],[3., 0.]], dtype=torch.float64)
tensor([127500., 106000., 178100., 140000.], dtype=torch.float64)

至此,我们使用 pandas 对原始数据进行预处理,读取数据集,处理缺失值;最后,将其转换为张量格式。


此上,如有任何为题,请留言或者联系,谢谢~

2024.2.12

这篇关于【深度学习】S1 预备知识 P2 数据预处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/704856

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片