ORB-SLAM3运行自制数据集进行定位教程

2024-02-12 12:28

本文主要是介绍ORB-SLAM3运行自制数据集进行定位教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目前手上有一个特定的任务,做应急救援的视觉SLAM,目前公共数据集比较少,考虑自建数据集,从网络上爬虫火灾、地震的等手机录制的视屏,应用一些现有成熟ORB-SLAM3系统到这个数据集上看效果,然后根据效果得到一些模型改进思路。

文章目录

    • 一、系统配置
    • 二、制作数据集
      • 1、脚本编写
      • 2、配置文件编写
      • 3、录制视频素材
      • 4、修改CMakeLists.txt
      • 5、编译运行

一、系统配置

系统版本
ubuntu20.04
OpenCV3.4.13
Eigen3.2.10
Pangolin0.6

二、制作数据集

1、脚本编写

#include <opencv2/opencv.hpp>
#include "System.h"
#include <string>
#include <chrono>   // for time stamp
#include <iostream>
using namespace std;
// 参数文件与字典文件
// 如果你系统上的路径不同,请修改它
string parameterFile = "./test.yaml";
string vocFile = "./Vocabulary/ORBvoc.txt";
// 视频文件,若不同请修改
string videoFile = "./test.mp4";
int main(int argc, char **argv) {// 声明 ORB-SLAM4 系统ORB_SLAM2::System SLAM(vocFile, parameterFile, ORB_SLAM2::System::MONOCULAR, true);// 获取视频图像cv::VideoCapture cap(videoFile);    // 参数0为usb相机// 记录系统时间auto start = chrono::system_clock::now();while (1) {cv::Mat frame;cap >> frame;   // 读取相机数据if ( frame.data == nullptr )continue;// rescale because image is too largecv::Mat frame_resized;cv::resize(frame, frame_resized, cv::Size(640,360));auto now = chrono::system_clock::now();auto timestamp = chrono::duration_cast<chrono::milliseconds>(now - start);SLAM.TrackMonocular(frame_resized, double(timestamp.count())/1000.0);cv::waitKey(30);}return 0;}

2、配置文件编写

%YAML:1.0#--------------------------------------------------------------------------------------------
# Camera Parameters. Adjust them!
#--------------------------------------------------------------------------------------------# Camera calibration and distortion parameters (OpenCV) 
Camera.fx: 500.0
Camera.fy: 500.0
Camera.cx: 320.0
Camera.cy: 240.0Camera.k1: 0.262383
Camera.k2: -0.953104
Camera.p1: -0.005358
Camera.p2: 0.002628
Camera.k3: 1.163314# Camera frames per second 
Camera.fps: 30.0# Color order of the images (0: BGR, 1: RGB. It is ignored if images are grayscale)
Camera.RGB: 0#--------------------------------------------------------------------------------------------
# ORB Parameters
#--------------------------------------------------------------------------------------------# ORB Extractor: Number of features per image
ORBextractor.nFeatures: 1000# ORB Extractor: Scale factor between levels in the scale pyramid     
ORBextractor.scaleFactor: 1.2# ORB Extractor: Number of levels in the scale pyramid    
ORBextractor.nLevels: 8# ORB Extractor: Fast threshold
# Image is divided in a grid. At each cell FAST are extracted imposing a minimum response.
# Firstly we impose iniThFAST. If no corners are detected we impose a lower value minThFAST
# You can lower these values if your images have low contrast            
ORBextractor.iniThFAST: 10
ORBextractor.minThFAST: 5#--------------------------------------------------------------------------------------------
# Viewer Parameters
#--------------------------------------------------------------------------------------------
Viewer.KeyFrameSize: 0.05
Viewer.KeyFrameLineWidth: 1
Viewer.GraphLineWidth: 0.9
Viewer.PointSize: 2
Viewer.CameraSize: 0.08
Viewer.CameraLineWidth: 3
Viewer.ViewpointX: 0
Viewer.ViewpointY: -0.7
Viewer.ViewpointZ: -1.8
Viewer.ViewpointF: 500

将两个文件复制到ORB_SLAM3根目录下

3、录制视频素材

(1)将手机横向拍摄
(2)开始拍摄时,首先手机左右缓慢水平移动,为了是ORB-SLAM2初始化正常,像螃蟹一样左右移动小步即可
(3)五秒左右,再慢慢往前走,不要走的太快,转弯时不要太快,防止跟踪丢失
(4)录制完成后,将其复制到ORB_SLAM3文件下,重命名为test.mp4

4、修改CMakeLists.txt

修改ORB_SLAM3里面的CMakeLists.txt,添加如下代码:

set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${PROJECT_SOURCE_DIR})
add_executable(test test.cpp)
target_link_libraries(test ${PROJECT_NAME})

5、编译运行

cd ORB_SLAM3
mkdir build
cd build
cmake ..
make -j
cd ..
./test

在这里插入图片描述

这篇关于ORB-SLAM3运行自制数据集进行定位教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/702585

相关文章

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)

《JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)》:本文主要介绍如何在IntelliJIDEA2020.1中创建和部署一个JavaWeb项目,包括创建项目、配置Tomcat服务... 目录简介:一、创建项目二、tomcat部署1、将tomcat解压在一个自己找得到路径2、在idea中添加

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

Python + Streamlit项目部署方案超详细教程(非Docker版)

《Python+Streamlit项目部署方案超详细教程(非Docker版)》Streamlit是一款强大的Python框架,专为机器学习及数据可视化打造,:本文主要介绍Python+St... 目录一、针对 Alibaba Cloud linux/Centos 系统的完整部署方案1. 服务器基础配置(阿里

Spring IOC核心原理详解与运用实战教程

《SpringIOC核心原理详解与运用实战教程》本文详细解析了SpringIOC容器的核心原理,包括BeanFactory体系、依赖注入机制、循环依赖解决和三级缓存机制,同时,介绍了SpringBo... 目录1. Spring IOC核心原理深度解析1.1 BeanFactory体系与内部结构1.1.1

SpringBoot集成iText快速生成PDF教程

《SpringBoot集成iText快速生成PDF教程》本文介绍了如何在SpringBoot项目中集成iText9.4.0生成PDF文档,包括新特性的介绍、环境准备、Service层实现、Contro... 目录SpringBoot集成iText 9.4.0生成PDF一、iText 9新特性与架构变革二、环

JAVA SpringBoot集成Jasypt进行加密、解密的详细过程

《JAVASpringBoot集成Jasypt进行加密、解密的详细过程》文章详细介绍了如何在SpringBoot项目中集成Jasypt进行加密和解密,包括Jasypt简介、如何添加依赖、配置加密密钥... 目录Java (SpringBoot) 集成 Jasypt 进行加密、解密 - 详细教程一、Jasyp

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

2025最新版Android Studio安装及组件配置教程(SDK、JDK、Gradle)

《2025最新版AndroidStudio安装及组件配置教程(SDK、JDK、Gradle)》:本文主要介绍2025最新版AndroidStudio安装及组件配置(SDK、JDK、Gradle... 目录原生 android 简介Android Studio必备组件一、Android Studio安装二、A