MIT | 数据分析、信号处理和机器学习中的矩阵方法 笔记系列 Lecture 5 Positive Definite and Semidefinite Matrices

本文主要是介绍MIT | 数据分析、信号处理和机器学习中的矩阵方法 笔记系列 Lecture 5 Positive Definite and Semidefinite Matrices,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本系列为MIT Gilbert Strang教授的"数据分析、信号处理和机器学习中的矩阵方法"的学习笔记。

  • Gilbert Strang & Sarah Hansen | Sprint 2018
  • 18.065: Matrix Methods in Data Analysis, Signal Processing, and Machine Learning
  • 视频网址: https://ocw.mit.edu/courses/18-065-matrix-methods-in-data-analysis-signal-processing-and-machine-learning-spring-2018/
  • 关注下面的公众号,回复“ 矩阵方法 ”,即可获取 本系列完整的pdf笔记文件~

内容在CSDN、知乎和微信公众号同步更新

  • CSDN博客
  • 知乎
  • 微信公众号

在这里插入图片描述

  • Markdown源文件暂未开源,如有需要可联系邮箱
  • 笔记难免存在问题,欢迎联系邮箱指正

Lecture 0: Course Introduction

Lecture 1 The Column Space of A A A Contains All Vectors A x Ax Ax

Lecture 2 Multiplying and Factoring Matrices

Lecture 3 Orthonormal Columns in Q Q Q Give Q ′ Q = I Q'Q=I QQ=I

Lecture 4 Eigenvalues and Eigenvectors

Lecture 5 Positive Definite and Semidefinite Matrices

Lecture 6 Singular Value Decomposition (SVD)

Lecture 7 Eckart-Young: The Closest Rank k k k Matrix to A A A

Lecture 8 Norms of Vectors and Matrices

Lecture 9 Four Ways to Solve Least Squares Problems

Lecture 10 Survey of Difficulties with A x = b Ax=b Ax=b

Lecture 11 Minimizing ||x|| Subject to A x = b Ax=b Ax=b

Lecture 12 Computing Eigenvalues and Singular Values

Lecture 13 Randomized Matrix Multiplication

Lecture 14 Low Rank Changes in A A A and Its Inverse

Lecture 15 Matrices A ( t ) A(t) A(t) Depending on t t t, Derivative = d A / d t dA/dt dA/dt

Lecture 16 Derivatives of Inverse and Singular Values

Lecture 17 Rapidly Decreasing Singular Values

Lecture 18 Counting Parameters in SVD, LU, QR, Saddle Points

Lecture 19 Saddle Points Continued, Maxmin Principle

Lecture 20 Definitions and Inequalities

Lecture 21 Minimizing a Function Step by Step

Lecture 22 Gradient Descent: Downhill to a Minimum

Lecture 23 Accelerating Gradient Descent (Use Momentum)

Lecture 24 Linear Programming and Two-Person Games

Lecture 25 Stochastic Gradient Descent

Lecture 26 Structure of Neural Nets for Deep Learning

Lecture 27 Backpropagation: Find Partial Derivatives

Lecture 28 Computing in Class [No video available]

Lecture 29 Computing in Class (cont.) [No video available]

Lecture 30 Completing a Rank-One Matrix, Circulants!

Lecture 31 Eigenvectors of Circulant Matrices: Fourier Matrix

Lecture 32 ImageNet is a Convolutional Neural Network (CNN), The Convolution Rule

Lecture 33 Neural Nets and the Learning Function

Lecture 34 Distance Matrices, Procrustes Problem

Lecture 35 Finding Clusters in Graphs

Lecture 36 Alan Edelman and Julia Language


文章目录

    • Lecture 5 Positive Definite and Semidefinite Matrices
      • 5.1 Positive Definite Matrix
        • 正定矩阵的性质
        • 正定矩阵的energy function及其在优化理论中的应用
        • 正定矩阵的判定
      • 5.2 Positive Semi-Definite (PSD) Matrix
        • 半正定矩阵的性质
        • 半正定矩阵举例


Lecture 5 Positive Definite and Semidefinite Matrices

5.1 Positive Definite Matrix

正定矩阵的性质

Topics in this lecture:

  • For Symmetric Positive Definite Matrix S S S (实矩阵: 正定矩阵 (一定是对称阵) ⇒ \Rightarrow 且特征值>0)

    1. All λ i \lambda_i λi > 0
    2. Energy x T S x > 0 x^T S x > 0 xTSx>0 (all x ≠ 0 x\not ={0} x=0)
    3. S = A T A S = A^T A S=ATA (independent cols in A)
    4. All leading determinants > 0 > 0 >0
    5. All points in elimination > 0 > 0 >0
  • An Example:

    • S = [ 3 4 4 5 ] S = \begin{bmatrix} 3 & 4\\ 4 & 5 \end{bmatrix} S=[3445]

      S S S is symmetric

  • Is S S S Positive Definite?

    • D e t ( S ) = 15 − 16 = − 1 Det(S) = 15 -16 = -1 Det(S)=1516=1

    • 意味着 λ 1 λ 2 = − 1 \lambda_1 \lambda_2 = -1 λ1λ2=1, 特征值不可能都是正的

  • 如何make S be positive?

    add stuff to the main diagonal ⇒ \Rightarrow make S S S more positive

    ▪ 将S的右下角替换为6

    S = [ 3 4 4 6 ] S = \begin{bmatrix} 3 & 4\\ 4 & 6 \end{bmatrix} S=[3446]

  • 需要 All leading determinants > 0 > 0 >0 pivot

    • S = [ − 3 4 4 − 6 ] S = \begin{bmatrix} -3 & 4\\ 4 & -6 \end{bmatrix} S=[3446] 非正定
  • 再看 All points in elimination > 0 > 0 >0

    ▪ 1st pivot = 3;

    S S S → \rightarrow [ 3 4 0 2 / 3 ] \begin{bmatrix} 3 & 4\\ 0 & 2/3 \end{bmatrix} [3042/3] ⇒ \Rightarrow 2nd pivot = 2 / 3 > 0 2/3 > 0 2/3>0

正定矩阵的energy function及其在优化理论中的应用
  • 关于 Energy x T S x > 0 x^T S x > 0 xTSx>0 (all x ≠ 0 x\not ={0} x=0)
    • f ( x ) = x T S x = [ x 1 x 2 ] [ 3 4 4 6 ] [ x 1 x 2 ] = [ x 1 x 2 ] [ 3 x 1 + 4 x 2 4 x 1 + 6 x 2 ] f(x) = x^T S x = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 3 & 4\\ 4 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 3x_1 + 4x_2 \\ 4x_1 + 6x_2 \end{bmatrix} f(x)=xTSx=[x1x2][3446][x1x2]=[x1x2][3x1+4x24x1+6x2] = 3 x 1 2 + 6 x 2 2 + 8 x 1 x 2 3x_{1}^2 + 6 x_{2}^2 + 8x_1 x_2 3x12+6x22+8x1x2

    • f ( x ) f(x) f(x) = 3 x 1 2 + 6 x 2 2 + 8 x 1 x 2 3x_{1}^2 + 6 x_{2}^2 + 8x_1 x_2 3x12+6x22+8x1x2

      ▪ f(x) 关于 x 1 x_1 x1 x 2 x_2 x2的函数如下图所示 (图中使用(x,y)表示 x x x的坐标)

      ▪ 此即 f ( x ) f(x) f(x)能量函数 (Energy function), and a convex function

      ▪ 该能量函数始终大于0 (all x ≠ 0 x\not ={0} x=0) --> 正定矩阵

      ▪ deep learning 中的 loss function 也是此类 energy function ⇒ \Rightarrow minimize the function

    • Therefore, f ( x ) > 0 f(x) > 0 f(x)>0 (for all x ≠ 0 x\not ={0} x=0)

      🚩 对于 quadratic , convex means positive definite / positive semidefinite

      🚩 使用gradient descent 进行求解, the big algorithm of deep learning、 neural nets and machine learning

      🚩 特征值决定了the energy function的形状: If you have a very small eigenvalue and a very large eigenvalue, the shape of the “bowl” will be thin and deep ⇒ \Rightarrow difficult for the gradient descent algorithms !!

      🚩 这也是正定矩阵非常重要的一个原因:能够确定根据损失函数解优化问题的性质,并根据特征值估计难度

1654329264854----Matrix_Gilbert_note.png

正定矩阵的判定
  • Question 1: If S S S and T T T are positive definite matrices, Is S = S 1 + S 2 S = S_1 + S_2 S=S1+S2 a positive definite matrix?

    • S,T are pos. def.

    • What about S+T?

    • 思路:使用最开始的5个test:

      ▪ 1 All λ i \lambda_i λi > 0

      ▪ 2 Energy x T S x > 0 x^T S x > 0 xTSx>0 (all x ≠ 0 x\not ={0} x=0)

      ▪ 3 S = A T A S = A^T A S=ATA (independent cols in A)

      ▪ 4 All leading determinants > 0 > 0 >0

      ▪ 5 All points in elimination > 0 > 0 >0

    • Test 1: Eigenvalues – Eigenvalue of (S+T) is not clear from S and T

    • Test 2: Energy x T ( S + T ) x > 0 ? x^T (S+T) x > 0 ? xT(S+T)x>0? for all x ≠ 0 \not ={0} =0

      ✅ Yes! x T ( S + T ) x = x T S x + x T T x > 0 x^T (S+T) x = x^T S x + x^T T x > 0 xT(S+T)x=xTSx+xTTx>0

      ✅ So the answer is yes: (S+T) is pos. def.

  • Question 2: If S S S is a positive definite matrix, Is S − 1 S^{-1} S1 a positive definite matrix?

    • Test 1: Good!
    • S − 1 S^-1 S1 has eigenvalues 1 / λ 1/\lambda 1/λ
    • So, Yes S − 1 S^{-1} S1 is a positive definite matrix
  • Question 3: If S S S is a positive definite matrix, Is S M SM SM a positive definite matrix? (M is another matrix)

    • ans: the question was not any good

    • S M SM SM is probably not symmetric 只有对称矩阵,才能确保特征值都是实数,才有之前的5个test

    • How about Q T S Q Q^T S Q QTSQ (Q is a orthogonal matrix)

      Q T S Q Q^T S Q QTSQ is a symmetric matrix

      Yes!

      ▪ Test 1: Q T S Q Q^T S Q QTSQ = Q − 1 S Q Q^{-1} S Q Q1SQ 与 matrix S S S similar ⇒ \Rightarrow the consequence of being similar: same eigenvalues Pos. def.

      ▪ Test 2: x T Q T S Q x = ( Q x ) T S ( Q x ) > 0 x^T Q^T S Q x = (Qx)^T S (Qx) > 0 xTQTSQx=(Qx)TS(Qx)>0 ⇒ \Rightarrow Pos. def.

5.2 Positive Semi-Definite (PSD) Matrix

半正定矩阵的性质
  • For Semi-Positive Definite Matrix S S S (实矩阵: 正定矩阵 (一定是对称阵) ⇒ \Rightarrow 且特征值>0)

    1. All λ i \lambda_i λi ≥ \geq 0
    2. Energy x T S x ≥ 0 x^T S x \geq 0 xTSx0 (all x ≠ 0 x\not ={0} x=0)
    3. S = A T A S = A^T A S=ATA (dependent columns allowed)
    4. All leading determinants ≥ 0 \geq 0 0
    5. All points in elimination ≥ 0 \geq 0 0
  • Semi-Positive Definite is the borderline

    • Example: S = [ 3 4 4 16 / 3 ] S = \begin{bmatrix} 3 & 4 \\ 4 & 16/3 \end{bmatrix} S=[34416/3]

    • (Test 1)关于eigenvalues:

      ▪ 根据 determinant ⇒ \Rightarrow λ 2 = 0 \lambda_2 = 0 λ2=0

      ▪ 根据 trace ⇒ \Rightarrow λ 1 = 3 + 16 / 3 \lambda_1 = 3 + 16/3 λ1=3+16/3

半正定矩阵举例
  • An example: S = [ 1 1 1 1 1 1 1 1 1 ] S = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} S=111111111
    • Semidef

    • Test 1: Its eigenvalues: {3,0,0}

    • 如何看出来它的特征值? ↓ \downarrow

      🚩 Because the rank is 1 ⇒ \Rightarrow only one non-zero eigenvalues;

      🚩 and the trace is 3 3 3 ⇒ \Rightarrow the eigenvalues are {3,0,0}

    • Test 3: write it as S = A T A S = A^T A S=ATA

      🚩 becaues it is symmetric, it can be write as:

      🚩 S = Q Λ Q T S = Q \Lambda Q^T S=QΛQT = λ 1 q 1 q 1 T + λ 2 q 2 q 2 T + λ 3 q 3 q 3 T \lambda_{1} q_1 q_1^T + \lambda_2 q_2 q_2^T + \lambda_3 q_3 q_3^T λ1q1q1T+λ2q2q2T+λ3q3q3T, 其中 λ 2 \lambda_2 λ2 and λ 3 \lambda_3 λ3 = 0 ⇒ \Rightarrow S = λ 1 q 1 q 1 T = 3 ( [ 1 , 1 , 1 ] T / ( 3 ) ) × [ 1 , 1 , 1 ] / ( 3 ) = q 1 T q 1 S = \lambda_1 q_1 q_1^T = 3 ([1,1,1]^T / (\sqrt{3})) \times [1,1,1] / (\sqrt{3}) = q_1^T q_1 S=λ1q1q1T=3([1,1,1]T/(3 ))×[1,1,1]/(3 )=q1Tq1

Next week:

  • singular value decomposition

这篇关于MIT | 数据分析、信号处理和机器学习中的矩阵方法 笔记系列 Lecture 5 Positive Definite and Semidefinite Matrices的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/700841

相关文章

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Apache Tomcat服务器版本号隐藏的几种方法

《ApacheTomcat服务器版本号隐藏的几种方法》本文主要介绍了ApacheTomcat服务器版本号隐藏的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1. 隐藏HTTP响应头中的Server信息编辑 server.XML 文件2. 修China编程改错误

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

JavaScript DOM操作与事件处理方法

《JavaScriptDOM操作与事件处理方法》本文通过一系列代码片段,详细介绍了如何使用JavaScript进行DOM操作、事件处理、属性操作、内容操作、尺寸和位置获取,以及实现简单的动画效果,涵... 目录前言1. 类名操作代码片段代码解析2. 属性操作代码片段代码解析3. 内容操作代码片段代码解析4.

SpringBoot3集成swagger文档的使用方法

《SpringBoot3集成swagger文档的使用方法》本文介绍了Swagger的诞生背景、主要功能以及如何在SpringBoot3中集成Swagger文档,Swagger可以帮助自动生成API文档... 目录一、前言1. API 文档自动生成2. 交互式 API 测试3. API 设计和开发协作二、使用

python忽略warnings的几种方法

《python忽略warnings的几种方法》本文主要介绍了几种在Python忽略警告信息的方法,,可以使用Python内置的警告控制机制来抑制特定类型的警告,下面就来介绍一下,感兴趣的可以了解一下... 目录方法 1: 使用 warnings 模块过滤特定类型和消息内容的警告方法 2: 使用 warnin