【深度学习】:实验6布置,图像自然语言描述生成(让计算机“看图说话”)

本文主要是介绍【深度学习】:实验6布置,图像自然语言描述生成(让计算机“看图说话”),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

清华大学驭风计划

因为篇幅原因实验答案分开上传,深度学习专栏持续更新中,期待的小伙伴敬请关注

实验答案链接http://t.csdnimg.cn/bA48U

有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~

案例 6 :图像自然语言描述生成(让计算机“看图说话”)
相关知识点: RNN Attention 机制、图像和文本数据的处理

1 任务和数据简介

本次案例将使用深度学习技术来完成图像自然语言描述生成任务,输入一张 图片,模型会给出关于图片内容的语言描述。本案例使用 coco2014 数据集 [1] ,包 含 82,783 张训练图片, 40,504 张验证图片, 40,775 张测试图片。案例使用 AndrejKarpathy[2] 提供的数据集划分方式和图片标注信息,案例已提供数据处理的脚本, 只需下载数据集和划分方式即可。 图像自然语言描述生成任务一般采用 Encoder-Decoder 的网络结构, Encoder 采用 CNN 结构,对输入图片进行编码, Decoder 采用 RNN 结构,利用 Encoder编码信息,逐个单词的解码文字描述输出。模型评估指标采用 BLEU 分数 [3] ,用来衡量预测和标签两句话的一致程度,具体计算方法可自行学习,案例已提供计算代码。

2 方法描述

模型输入

       图像统一到 256 × 256 大小,并且归一化到 [−1,1] 后还要对图像进行 RGB 三通道均值和标准差的标准化。语言描述标签信息既要作为目标标签,也要作为Decoder 的输入,以 <start> 开始, <end> 结束并且需要拓展到统一长度,例如 :
< 𝑠𝑡𝑎𝑟𝑡 > 𝑎 𝑡𝑎𝑏𝑙𝑒 𝑡𝑜𝑝𝑝𝑒𝑑 𝑤𝑖𝑡ℎ 𝑝𝑙𝑎𝑡𝑒𝑠 𝑜𝑓 𝑓𝑜𝑜𝑑 𝑎𝑛𝑑 𝑑𝑟𝑖𝑛𝑘𝑠 < 𝑒𝑛𝑑 > < 𝑝𝑎𝑑 > < 𝑝𝑎𝑑 >< 𝑝𝑎𝑑 > ⋯
        每个 token 按照词汇表转为相应的整数。同时还需要输入描述语言的长度, 具体为单词数加 2 (<start> <end>) ,目的是为了节省在 <pad> 上的计算时间。

Encoder

案例使用 ResNet101 网络作为编码器,去除最后 Pooling Fc 两层,并添加 了 AdaptiveAvgPool2d() 层来得到固定大小的编码结果。编码器已在 ImageNet 上预训练好,在本案例中可以选择对其进行微调以得到更好的结果。

Decoder

Decoder 是本案例中着重要求的内容。案例要求实现两种 Decoder 方式,分别对应这两篇文章[4][5] 。在此简要阐述两种 Decoder 方法,进一步学习可参考原文章。
       第一种 Decoder 是用 RNN 结构来进行解码,解码单元可选择 RNN LSTM,GRU 中的一种,初始的隐藏状态和单元状态可以由编码结果经过一层全连接层并做批归一化 (Batch Normalization) 后作为解码单元输入得到,后续的每个解码单元的输入为单词经过 word embedding 后的编码结果、上一层的隐藏状态和单元状态,解码输出经过全连接层和 Softmax 后得到一个在所有词汇上的概率分布,并由此得到下一个单词。Decoder 解码使用到了 teacher forcing 机制,每一时间步解码时的输入单词为标签单词,而非上一步解码出来的预测单词。训练时,经过与输入相同步长的解码之后,计算预测和标签之间的交叉熵损失,进行 BP反传更新参数即可。测试时由于不提供标签信息,解码单元每一时间步输入单词为上一步解码预测的单词,直到解码出<end> 信息。测试时可以采用 beam search 解码方法来得到更准确的语言描述,具体方法可自行学习。
       第二种 Decoder 是用 RNN 加上 Attention 机制来进行解码, Attention 机制做的是生成一组权重,对需要关注的部分给予较高的权重,对不需要关注的部分给予较低的权重。当生成某个特定的单词时,Attention 给出的权重较高的部分会在 图像中该单词对应的特定区域,即该单词主要是由这片区域对应的特征生成的。Attention 权重的计算方法为:
𝛼 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑓𝑐 (𝑟𝑒𝑙𝑢(𝑓𝑐(𝑒𝑛𝑐𝑜𝑑𝑒𝑟_𝑜𝑢𝑡𝑝𝑢𝑡) + 𝑓𝑐(ℎ))))
其中 softmax() 表示 Softmax 函数, fc() 表示全连接层, relu() 表示 ReLU 激活函数,encoder_output 是编码器的编码结果, h 是上一步的隐藏状态。初始的隐藏状态和单元状态由编码结果分别经过两个全连接层得到。每一时间步解码单元的输入除了上一步的隐藏状态和单元状态外,还有一个向量,该向量由单词经过word embedding 后的结果和编码器编码结果乘上注意力权重再经过一层全连接层后的结果拼接而成。解码器同样使用 teacher forcing 机制,训练和测试时的流程与第一种 Decoder 描述的一致。

样例输出

第一种 Decoder 得到的结果仅包含图像的文字描述,如下图:
第二种 Decoder 由于有 Attention 机制的存在,可以得到每个单词对应的图片区域,如下图:

3 参考程序及使用说明

本次案例提供了完整、可供运行的参考程序,各程序简介如下:
create_input_files.py : 下载好数据集和划分方式后需要运行该脚本文件,会生成案例需要的 json hdf5 文件,注意指定输入和输出数据存放的位置。
datasets.py : 定义符合 pytorch 标准的 Dataset 类,供数据按 Batch 读入。
models.py : 定义 Encoder Decoder 网络结构,其中 Encoder 已提前定义好,无需自己实现。两种 Decoder 方法需要自行实现,已提供部分代码,只需将 #ToDo 部分补充完全即可。
solver.py : 定义了训练和验证函数,供模型训练使用。
train.ipynb : 用于训练的 jupyter 文件,其中超参数需要自行调节,训练过程中可以看到模型准确率和损失的变化,并可以得到每个 epoch 后模型在验证集上的 BLEU 分数,保存最优的验证结果对应的模型用于测试。
test.ipynb : 用于测试的 jupyter 文件,加载指定的模型,解码时不使用 teacher forcing,并使用 beam search 的解码方法,最终会得到模型在测试集上的 BLEU分数。
caption.ipynb : 加载指定模型,对单张输入图片进行语言描述,第一种Decoder 方法只能得到用于描述的语句,第二种 Decoder 方法同时可以获取每个单词对应的注意力权重,最后对结果进行可视化。
utils.py : 定义一些可能需要用到的函数,如计算准确率、图像可视化等。
环境要求: python pytorch, torchvision, numpy, nltk, tqdm, h5py, json, PIL,
matplotlib, scikit-image, scipy=1.1.0 等。

4 要求与建议

完成 models.py 文件中的 #To Do 部分,可参考第 2 部分中的介绍或原论文;
调节超参数,运行 train.ipynb ,其中 attention 参数指示使用哪种 Decoder ,分别训练使用两种不同 Decoder 的模型,可以分两个 jupyter 文件保存最佳参数和训练记录,如 train1.ipynb, train2.ipynb
运行 test.ipynb 得到两个模型在测试集上的 BLEU 分数,分别保留结果;
选择一张图片,可以是测试集中的,也可以是自行挑选的,对图片进行语言描述自动生成,分别保留可视化结果;
在参考程序的基础上,综合使用深度学习各项技术,尝试提升该模型在图像自然语言描述生成任务上的效果,如使用更好的预训练模型作为 Encoder ,或者提出更好的 Decoder 结构,如 Adaptive Attention 等;
完成一个实验报告,内容包括基础两个模型的实现原理说明、两个模型的最佳参数和对应测试集 BLEU 分数、两个模型在单个图片上的表现效果、自己所做的改进、对比分析两个基础模型结果的不同优劣。
禁止任何形式的抄袭,借鉴开源程序务必加以说明。

5 参考资料

[1] MS-COCO 数据集 : https://cocodataset.org/
[2] 划分方式与 caption 信息:
http://cs.stanford.edu/people/karpathy/deepimagesent/caption_datasets.zip
[3] https://en.wikipedia.org/wiki/BLEU
[4] Vinyals O, Toshev A, Bengio S, et al. Show and tell: A neural image caption
generator[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015:
3156-3164.
[5] Xu K, Ba J, Kiros R, et al. Show, attend and tell: Neural image caption generation with
visual attention[C]//International conference on machine learning. 2015: 2048-2057.

这篇关于【深度学习】:实验6布置,图像自然语言描述生成(让计算机“看图说话”)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/699374

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree