#扩展欧几里得算法,快速乘#洛谷 4777 poj 2891 【模板】扩展中国剩余定理

本文主要是介绍#扩展欧几里得算法,快速乘#洛谷 4777 poj 2891 【模板】扩展中国剩余定理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目

给定 n n n组非负整数 a i , b i a_i, b_i ai,bi,求解关于 x x x的方程组
x ≡ b 1 ( m o d    a 1 ) x\equiv b_1(\mod a_1) xb1(moda1)
x ≡ b 2 ( m o d    a 2 ) x\equiv b_2(\mod a_2) xb2(moda2) ⋯ \cdots
x ≡ b n ( m o d    a n ) x\equiv b_n(\mod a_n) xbn(modan)
的最小非负整数解


分析

虽然题目好像是中国剩余定理,但是 a a a数组不满足互质,必然是需要其它的方法,那么就可以用扩欧,跑n遍,因为要求最小,所以需要求最小公倍数,然后其实就没什么了


代码

#include <cstdio>
#define rr register
typedef long long ll;
ll in(){ll ans=0; char c=getchar();while (c<48||c>57) c=getchar();while (c>47&&c<58) ans=(ans<<3)+(ans<<1)+c-48,c=getchar();return ans;
}
void print(ll ans){if (ans>9) print(ans/10);putchar(ans%10+48);
}
ll exgcd(ll a,ll b,ll &x,ll &y){//扩欧if (!b) {x=1; y=0; return a;}else{rr ll d=exgcd(b,a%b,y,x);y-=a/b*x; return d;}
}
ll ksm(ll x,ll y,ll mod){//快速乘ll ans=0;while (y){if (y&1) ans=(ans+x)%mod;x=(x+x)%mod; y>>=1;}return ans;
}
int main(){rr int n;while (scanf("%d",&n)==1){rr ll a=in(),ans=in(); rr bool flag=1;while (--n){rr ll b=in(),c=in();if (!flag) continue;c=(c-ans%b+b)%b; rr ll x,y,mod;//求出新的答案rr ll d=exgcd(a,b,x,y); mod=b/d;//扩欧if (c%d) {flag=0; continue;}//不可能x=ksm(x,c/d,mod);//快速乘ans+=x*a; a*=mod; ans=(ans%a+a)%a;//求最小非负整数解}if (!flag) putchar('-'),putchar(49);else if (ans) print(ans); else putchar(48); putchar(10);}
}

这篇关于#扩展欧几里得算法,快速乘#洛谷 4777 poj 2891 【模板】扩展中国剩余定理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/698992

相关文章

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

跨国公司撤出在华研发中心的启示:中国IT产业的挑战与机遇

近日,IBM中国宣布撤出在华的两大研发中心,这一决定在IT行业引发了广泛的讨论和关注。跨国公司在华研发中心的撤出,不仅对众多IT从业者的职业发展带来了直接的冲击,也引发了人们对全球化背景下中国IT产业竞争力和未来发展方向的深思。面对这一突如其来的变化,我们应如何看待跨国公司的决策?中国IT人才又该如何应对?中国IT产业将何去何从?本文将围绕这些问题展开探讨。 跨国公司撤出的背景与

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig