将激光点云数据投影到二维图像及对三维点云上色

2024-02-11 03:40

本文主要是介绍将激光点云数据投影到二维图像及对三维点云上色,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近在做一些毕设的东西,做到这里写个笔记记录以下,也为大家提供一点参考。
本次所用的数据是16线的激光点云数据和1080p的usb图像信息,内容涉及到标定,投影两个部分,参考网上大部分都是ros下方进行进一步开发,这里写一个不一样的。

1、相机和激光雷达标定

相机和激光雷达标定使用的是autoware的标定包。需要标定的话可以参考大佬们的博客,内容相差不大,里面有工具安装步骤和标定方法。
https://blog.csdn.net/AdamShan/article/details/81670732

https://blog.csdn.net/zbr794866300/article/details/107109186

2、矩阵参数转置

autoware构建出来的矩阵不能拿来直接使用,原因我就不仔细在这里介绍了。可以参考大佬们的博客。直通车!!!(飞机票)

3、激光和相机之间的投影

这里就直接上全部代码了,关键部分的代码解读,参考这行的飞机票。python版本的点这个链接。

#include<iostream>
#include<opencv2/opencv.hpp>
#include<string>
#include<pcl/io/pcd_io.h>
#include<pcl/common/transforms.h>
#include<pcl/console/parse.h>
#include<pcl/visualization/range_image_visualizer.h>
#include<pcl/common/common_headers.h>
#include<pcl/visualization/pcl_visualizer.h>
#include<pcl/visualization/cloud_viewer.h>
using namespace std;
struct fileArg
{cv::Mat extrinsic_mat, camera_mat,dist_coeff; //外参矩阵,内参矩阵,畸变矩阵cv::Mat rotate_mat,transform_vec; //旋转矩阵,平移向量
};struct calcuArg
{cv::Mat rotate_mat;cv::Mat transform_vec;cv::Mat rotate_vec;
};void getMatrixFromFile(cv::String filePath, fileArg& filearg, calcuArg& calarg) {    cv::FileStorage fs(filePath, cv::FileStorage::READ); //打开标定结果文件if(!fs.isOpened()) cout<< "open failed"<<endl; fs["CameraExtrinsicMat"] >> filearg.extrinsic_mat; //从文件里读取4x4外参矩阵fs["CameraMat"] >>filearg.camera_mat; //从文件里读取3x3相机内参矩阵fs["DistCoeff"] >> filearg.dist_coeff; //从文件里读取5x1畸变矩阵fs.release(); //关闭文件calarg.rotate_mat=cv::Mat(3, 3, cv::DataType<double>::type); // 将旋转矩阵赋值成3x3矩阵for(int i=0;i<3;i++){for(int j=0;j<3;j++){calarg.rotate_mat.at<double>(i,j)=filearg.extrinsic_mat.at<double>(j,i); // 取前三行前三列}}//cv::transpose( filearg.camera_mat ,filearg.camera_mat);网上说先做转置,但是转了效果不对calarg.rotate_vec = cv::Mat(3, 1, cv::DataType<double>::type); cv::Rodrigues(calarg.rotate_mat, calarg.rotate_vec);calarg.transform_vec=cv::Mat(3, 1, cv::DataType<double>::type); //将平移向量赋值成3x1矩阵calarg.transform_vec.at<double>(0)=filearg.extrinsic_mat.at<double>(1,3);calarg.transform_vec.at<double>(1)=filearg.extrinsic_mat.at<double>(2,3);calarg.transform_vec.at<double>(2)=-filearg.extrinsic_mat.at<double>(0,3);
}void projection(const pcl::PointCloud<pcl::PointXYZI>::Ptr&ccloud,  pcl::PointCloud<pcl::PointXYZRGB>::Ptr & rgb_cloud,cv::Mat&img, fileArg& filearg, calcuArg& calarg) {vector<cv::Point3f> points3d; //存储点云点的vcector,必须存储成cv::Point3f格式points3d.reserve(ccloud->size()+1); //先给points3d分配足够大的内存空间,避免push_back时频繁复制转移cv::Point3f point;for(int i=0;i<ccloud->size();i++){point.x=ccloud->points[i].x;point.y=ccloud->points[i].y;point.z=ccloud->points[i].z;points3d.push_back(point); //逐个插入}vector<cv::Point2f> projectedPoints; //该vector用来存储投影过后的二维点,三维点投影后变二维cv::projectPoints(points3d, calarg.rotate_vec,calarg.transform_vec,filearg.camera_mat,filearg.dist_coeff,projectedPoints);//获取点云投影数据,并限制在相机视角内vector<cv::Point2f> pointInImg;for(int i=0; i<projectedPoints.size(); i++){cv::Point2f p = projectedPoints[i];float x = p.x;float y = p.y;if(x>=0 && x<=1920 && y>=0 && y<=1080) { //这里的相机分辨率是1920*1080的,所以选择区域时要填自己相机的分辨率pointInImg.push_back(p);}}pcl::PointXYZRGB point_rgb;//pcl::PointCloud<pcl::PointXYZRGB>::Ptr  point_rgb (new pcl::PointCloud<pcl::PointXYZRGB> );//遍历投影结果for (int i = 0; i<projectedPoints.size(); i++){cv::Point2f p = projectedPoints[i];// 由于图像尺寸为1920x1080,所以投影后坐标不在图像范围内的点不保存if (p.y<1080&&p.y>=0&&p.x<1920&&p.x>=0  && ccloud->points[i].x>0) {point_rgb.x=ccloud->points[i].x;point_rgb.y=ccloud->points[i].y;point_rgb.z=ccloud->points[i].z;           point_rgb.r=int(img.at<cv::Vec3b>(p.y,p.x)[2]); //读取像素点的rgb值point_rgb.g=int(img.at<cv::Vec3b>(p.y,p.x)[1]);point_rgb.b=int(img.at<cv::Vec3b>(p.y,p.x)[0]);//对于投影后在图像中的点进行染色后加入点云rgb_cloudrgb_cloud->push_back(point_rgb); }}for(int i=0; i<pointInImg.size(); i++) { //在图像上画实心圆点cv::circle(img, pointInImg[i], 3, cv::Scalar(255,0,0), -1);}
}int main(int argc, char** argv) {cv::String argpathfile = "xxxx.yaml"; //这里输入标定参数的yaml信息string pcdPath = argv[1]; //命令行第一个参数时pcd的。cv::String imgPath = argv[2];//第二个参数是jpg文件的。fileArg fileinfo;calcuArg calout;pcl::PointCloud<pcl::PointXYZI>::Ptr  cloud_tmp (new pcl::PointCloud<pcl::PointXYZI> );pcl::PointCloud<pcl::PointXYZRGB>::Ptr  rgb_cloud (new pcl::PointCloud<pcl::PointXYZRGB> );if(pcl::io::loadPCDFile("./data/" + pcdPath,  *cloud_tmp)<0) { //打开pcd图像PCL_ERROR("Error loading cloud %s.\n", "pcdPath");return -1;}cv::Mat img = cv::imread("./data/" + imgPath, CV_LOAD_IMAGE_UNCHANGED); //打开jpg图像//cv::imshow("Img", img);//获取矩阵信息getMatrixFromFile(argpathfile, fileinfo, calout);//将点云信息投影到图像上projection(cloud_tmp, rgb_cloud ,img, fileinfo, calout);cv::imshow("Img", img);cv::waitKey(0);//点云可视化boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer ("3d Viewer"));viewer->setBackgroundColor (0, 0, 0);pcl::visualization::PointCloudColorHandlerRGBField<pcl::PointXYZRGB> rgb(rgb_cloud);viewer->addPointCloud<pcl::PointXYZRGB>(rgb_cloud,rgb,"sample cloud");viewer->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 3, "sample cloud");viewer->addCoordinateSystem (1.0);viewer->initCameraParameters ();while(!viewer->wasStopped()) {viewer->spinOnce();}return 0;
}

这里直接放相机视角下的点云信息。程序还可以生成投影了点云的图像信息,这个信息和标定的结果相关。
在这里插入图片描述

这篇关于将激光点云数据投影到二维图像及对三维点云上色的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/698740

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.