将激光点云数据投影到二维图像及对三维点云上色

2024-02-11 03:40

本文主要是介绍将激光点云数据投影到二维图像及对三维点云上色,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近在做一些毕设的东西,做到这里写个笔记记录以下,也为大家提供一点参考。
本次所用的数据是16线的激光点云数据和1080p的usb图像信息,内容涉及到标定,投影两个部分,参考网上大部分都是ros下方进行进一步开发,这里写一个不一样的。

1、相机和激光雷达标定

相机和激光雷达标定使用的是autoware的标定包。需要标定的话可以参考大佬们的博客,内容相差不大,里面有工具安装步骤和标定方法。
https://blog.csdn.net/AdamShan/article/details/81670732

https://blog.csdn.net/zbr794866300/article/details/107109186

2、矩阵参数转置

autoware构建出来的矩阵不能拿来直接使用,原因我就不仔细在这里介绍了。可以参考大佬们的博客。直通车!!!(飞机票)

3、激光和相机之间的投影

这里就直接上全部代码了,关键部分的代码解读,参考这行的飞机票。python版本的点这个链接。

#include<iostream>
#include<opencv2/opencv.hpp>
#include<string>
#include<pcl/io/pcd_io.h>
#include<pcl/common/transforms.h>
#include<pcl/console/parse.h>
#include<pcl/visualization/range_image_visualizer.h>
#include<pcl/common/common_headers.h>
#include<pcl/visualization/pcl_visualizer.h>
#include<pcl/visualization/cloud_viewer.h>
using namespace std;
struct fileArg
{cv::Mat extrinsic_mat, camera_mat,dist_coeff; //外参矩阵,内参矩阵,畸变矩阵cv::Mat rotate_mat,transform_vec; //旋转矩阵,平移向量
};struct calcuArg
{cv::Mat rotate_mat;cv::Mat transform_vec;cv::Mat rotate_vec;
};void getMatrixFromFile(cv::String filePath, fileArg& filearg, calcuArg& calarg) {    cv::FileStorage fs(filePath, cv::FileStorage::READ); //打开标定结果文件if(!fs.isOpened()) cout<< "open failed"<<endl; fs["CameraExtrinsicMat"] >> filearg.extrinsic_mat; //从文件里读取4x4外参矩阵fs["CameraMat"] >>filearg.camera_mat; //从文件里读取3x3相机内参矩阵fs["DistCoeff"] >> filearg.dist_coeff; //从文件里读取5x1畸变矩阵fs.release(); //关闭文件calarg.rotate_mat=cv::Mat(3, 3, cv::DataType<double>::type); // 将旋转矩阵赋值成3x3矩阵for(int i=0;i<3;i++){for(int j=0;j<3;j++){calarg.rotate_mat.at<double>(i,j)=filearg.extrinsic_mat.at<double>(j,i); // 取前三行前三列}}//cv::transpose( filearg.camera_mat ,filearg.camera_mat);网上说先做转置,但是转了效果不对calarg.rotate_vec = cv::Mat(3, 1, cv::DataType<double>::type); cv::Rodrigues(calarg.rotate_mat, calarg.rotate_vec);calarg.transform_vec=cv::Mat(3, 1, cv::DataType<double>::type); //将平移向量赋值成3x1矩阵calarg.transform_vec.at<double>(0)=filearg.extrinsic_mat.at<double>(1,3);calarg.transform_vec.at<double>(1)=filearg.extrinsic_mat.at<double>(2,3);calarg.transform_vec.at<double>(2)=-filearg.extrinsic_mat.at<double>(0,3);
}void projection(const pcl::PointCloud<pcl::PointXYZI>::Ptr&ccloud,  pcl::PointCloud<pcl::PointXYZRGB>::Ptr & rgb_cloud,cv::Mat&img, fileArg& filearg, calcuArg& calarg) {vector<cv::Point3f> points3d; //存储点云点的vcector,必须存储成cv::Point3f格式points3d.reserve(ccloud->size()+1); //先给points3d分配足够大的内存空间,避免push_back时频繁复制转移cv::Point3f point;for(int i=0;i<ccloud->size();i++){point.x=ccloud->points[i].x;point.y=ccloud->points[i].y;point.z=ccloud->points[i].z;points3d.push_back(point); //逐个插入}vector<cv::Point2f> projectedPoints; //该vector用来存储投影过后的二维点,三维点投影后变二维cv::projectPoints(points3d, calarg.rotate_vec,calarg.transform_vec,filearg.camera_mat,filearg.dist_coeff,projectedPoints);//获取点云投影数据,并限制在相机视角内vector<cv::Point2f> pointInImg;for(int i=0; i<projectedPoints.size(); i++){cv::Point2f p = projectedPoints[i];float x = p.x;float y = p.y;if(x>=0 && x<=1920 && y>=0 && y<=1080) { //这里的相机分辨率是1920*1080的,所以选择区域时要填自己相机的分辨率pointInImg.push_back(p);}}pcl::PointXYZRGB point_rgb;//pcl::PointCloud<pcl::PointXYZRGB>::Ptr  point_rgb (new pcl::PointCloud<pcl::PointXYZRGB> );//遍历投影结果for (int i = 0; i<projectedPoints.size(); i++){cv::Point2f p = projectedPoints[i];// 由于图像尺寸为1920x1080,所以投影后坐标不在图像范围内的点不保存if (p.y<1080&&p.y>=0&&p.x<1920&&p.x>=0  && ccloud->points[i].x>0) {point_rgb.x=ccloud->points[i].x;point_rgb.y=ccloud->points[i].y;point_rgb.z=ccloud->points[i].z;           point_rgb.r=int(img.at<cv::Vec3b>(p.y,p.x)[2]); //读取像素点的rgb值point_rgb.g=int(img.at<cv::Vec3b>(p.y,p.x)[1]);point_rgb.b=int(img.at<cv::Vec3b>(p.y,p.x)[0]);//对于投影后在图像中的点进行染色后加入点云rgb_cloudrgb_cloud->push_back(point_rgb); }}for(int i=0; i<pointInImg.size(); i++) { //在图像上画实心圆点cv::circle(img, pointInImg[i], 3, cv::Scalar(255,0,0), -1);}
}int main(int argc, char** argv) {cv::String argpathfile = "xxxx.yaml"; //这里输入标定参数的yaml信息string pcdPath = argv[1]; //命令行第一个参数时pcd的。cv::String imgPath = argv[2];//第二个参数是jpg文件的。fileArg fileinfo;calcuArg calout;pcl::PointCloud<pcl::PointXYZI>::Ptr  cloud_tmp (new pcl::PointCloud<pcl::PointXYZI> );pcl::PointCloud<pcl::PointXYZRGB>::Ptr  rgb_cloud (new pcl::PointCloud<pcl::PointXYZRGB> );if(pcl::io::loadPCDFile("./data/" + pcdPath,  *cloud_tmp)<0) { //打开pcd图像PCL_ERROR("Error loading cloud %s.\n", "pcdPath");return -1;}cv::Mat img = cv::imread("./data/" + imgPath, CV_LOAD_IMAGE_UNCHANGED); //打开jpg图像//cv::imshow("Img", img);//获取矩阵信息getMatrixFromFile(argpathfile, fileinfo, calout);//将点云信息投影到图像上projection(cloud_tmp, rgb_cloud ,img, fileinfo, calout);cv::imshow("Img", img);cv::waitKey(0);//点云可视化boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer ("3d Viewer"));viewer->setBackgroundColor (0, 0, 0);pcl::visualization::PointCloudColorHandlerRGBField<pcl::PointXYZRGB> rgb(rgb_cloud);viewer->addPointCloud<pcl::PointXYZRGB>(rgb_cloud,rgb,"sample cloud");viewer->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 3, "sample cloud");viewer->addCoordinateSystem (1.0);viewer->initCameraParameters ();while(!viewer->wasStopped()) {viewer->spinOnce();}return 0;
}

这里直接放相机视角下的点云信息。程序还可以生成投影了点云的图像信息,这个信息和标定的结果相关。
在这里插入图片描述

这篇关于将激光点云数据投影到二维图像及对三维点云上色的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/698740

相关文章

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

Linux服务器数据盘移除并重新挂载的全过程

《Linux服务器数据盘移除并重新挂载的全过程》:本文主要介绍在Linux服务器上移除并重新挂载数据盘的整个过程,分为三大步:卸载文件系统、分离磁盘和重新挂载,每一步都有详细的步骤和注意事项,确保... 目录引言第一步:卸载文件系统第二步:分离磁盘第三步:重新挂载引言在 linux 服务器上移除并重新挂p

使用MyBatis TypeHandler实现数据加密与解密的具体方案

《使用MyBatisTypeHandler实现数据加密与解密的具体方案》在我们日常的开发工作中,经常会遇到一些敏感数据需要存储,比如用户的手机号、身份证号、银行卡号等,为了保障数据安全,我们通常会对... 目录1. 核心概念:什么是 TypeHandler?2. 实战场景3. 代码实现步骤步骤 1:定义 E

使用C#导出Excel数据并保存多种格式的完整示例

《使用C#导出Excel数据并保存多种格式的完整示例》在现代企业信息化管理中,Excel已经成为最常用的数据存储和分析工具,从员工信息表、销售数据报表到财务分析表,几乎所有部门都离不开Excel,本文... 目录引言1. 安装 Spire.XLS2. 创建工作簿和填充数据3. 保存为不同格式4. 效果展示5

Python多任务爬虫实现爬取图片和GDP数据

《Python多任务爬虫实现爬取图片和GDP数据》本文主要介绍了基于FastAPI开发Web站点的方法,包括搭建Web服务器、处理图片资源、实现多任务爬虫和数据可视化,同时,还简要介绍了Python爬... 目录一. 基于FastAPI之Web站点开发1. 基于FastAPI搭建Web服务器2. Web服务

MySQL 批量插入的原理和实战方法(快速提升大数据导入效率)

《MySQL批量插入的原理和实战方法(快速提升大数据导入效率)》在日常开发中,我们经常需要将大量数据批量插入到MySQL数据库中,本文将介绍批量插入的原理、实现方法,并结合Python和PyMySQ... 目录一、批量插入的优势二、mysql 表的创建示例三、python 实现批量插入1. 安装 PyMyS