将激光点云数据投影到二维图像及对三维点云上色

2024-02-11 03:40

本文主要是介绍将激光点云数据投影到二维图像及对三维点云上色,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近在做一些毕设的东西,做到这里写个笔记记录以下,也为大家提供一点参考。
本次所用的数据是16线的激光点云数据和1080p的usb图像信息,内容涉及到标定,投影两个部分,参考网上大部分都是ros下方进行进一步开发,这里写一个不一样的。

1、相机和激光雷达标定

相机和激光雷达标定使用的是autoware的标定包。需要标定的话可以参考大佬们的博客,内容相差不大,里面有工具安装步骤和标定方法。
https://blog.csdn.net/AdamShan/article/details/81670732

https://blog.csdn.net/zbr794866300/article/details/107109186

2、矩阵参数转置

autoware构建出来的矩阵不能拿来直接使用,原因我就不仔细在这里介绍了。可以参考大佬们的博客。直通车!!!(飞机票)

3、激光和相机之间的投影

这里就直接上全部代码了,关键部分的代码解读,参考这行的飞机票。python版本的点这个链接。

#include<iostream>
#include<opencv2/opencv.hpp>
#include<string>
#include<pcl/io/pcd_io.h>
#include<pcl/common/transforms.h>
#include<pcl/console/parse.h>
#include<pcl/visualization/range_image_visualizer.h>
#include<pcl/common/common_headers.h>
#include<pcl/visualization/pcl_visualizer.h>
#include<pcl/visualization/cloud_viewer.h>
using namespace std;
struct fileArg
{cv::Mat extrinsic_mat, camera_mat,dist_coeff; //外参矩阵,内参矩阵,畸变矩阵cv::Mat rotate_mat,transform_vec; //旋转矩阵,平移向量
};struct calcuArg
{cv::Mat rotate_mat;cv::Mat transform_vec;cv::Mat rotate_vec;
};void getMatrixFromFile(cv::String filePath, fileArg& filearg, calcuArg& calarg) {    cv::FileStorage fs(filePath, cv::FileStorage::READ); //打开标定结果文件if(!fs.isOpened()) cout<< "open failed"<<endl; fs["CameraExtrinsicMat"] >> filearg.extrinsic_mat; //从文件里读取4x4外参矩阵fs["CameraMat"] >>filearg.camera_mat; //从文件里读取3x3相机内参矩阵fs["DistCoeff"] >> filearg.dist_coeff; //从文件里读取5x1畸变矩阵fs.release(); //关闭文件calarg.rotate_mat=cv::Mat(3, 3, cv::DataType<double>::type); // 将旋转矩阵赋值成3x3矩阵for(int i=0;i<3;i++){for(int j=0;j<3;j++){calarg.rotate_mat.at<double>(i,j)=filearg.extrinsic_mat.at<double>(j,i); // 取前三行前三列}}//cv::transpose( filearg.camera_mat ,filearg.camera_mat);网上说先做转置,但是转了效果不对calarg.rotate_vec = cv::Mat(3, 1, cv::DataType<double>::type); cv::Rodrigues(calarg.rotate_mat, calarg.rotate_vec);calarg.transform_vec=cv::Mat(3, 1, cv::DataType<double>::type); //将平移向量赋值成3x1矩阵calarg.transform_vec.at<double>(0)=filearg.extrinsic_mat.at<double>(1,3);calarg.transform_vec.at<double>(1)=filearg.extrinsic_mat.at<double>(2,3);calarg.transform_vec.at<double>(2)=-filearg.extrinsic_mat.at<double>(0,3);
}void projection(const pcl::PointCloud<pcl::PointXYZI>::Ptr&ccloud,  pcl::PointCloud<pcl::PointXYZRGB>::Ptr & rgb_cloud,cv::Mat&img, fileArg& filearg, calcuArg& calarg) {vector<cv::Point3f> points3d; //存储点云点的vcector,必须存储成cv::Point3f格式points3d.reserve(ccloud->size()+1); //先给points3d分配足够大的内存空间,避免push_back时频繁复制转移cv::Point3f point;for(int i=0;i<ccloud->size();i++){point.x=ccloud->points[i].x;point.y=ccloud->points[i].y;point.z=ccloud->points[i].z;points3d.push_back(point); //逐个插入}vector<cv::Point2f> projectedPoints; //该vector用来存储投影过后的二维点,三维点投影后变二维cv::projectPoints(points3d, calarg.rotate_vec,calarg.transform_vec,filearg.camera_mat,filearg.dist_coeff,projectedPoints);//获取点云投影数据,并限制在相机视角内vector<cv::Point2f> pointInImg;for(int i=0; i<projectedPoints.size(); i++){cv::Point2f p = projectedPoints[i];float x = p.x;float y = p.y;if(x>=0 && x<=1920 && y>=0 && y<=1080) { //这里的相机分辨率是1920*1080的,所以选择区域时要填自己相机的分辨率pointInImg.push_back(p);}}pcl::PointXYZRGB point_rgb;//pcl::PointCloud<pcl::PointXYZRGB>::Ptr  point_rgb (new pcl::PointCloud<pcl::PointXYZRGB> );//遍历投影结果for (int i = 0; i<projectedPoints.size(); i++){cv::Point2f p = projectedPoints[i];// 由于图像尺寸为1920x1080,所以投影后坐标不在图像范围内的点不保存if (p.y<1080&&p.y>=0&&p.x<1920&&p.x>=0  && ccloud->points[i].x>0) {point_rgb.x=ccloud->points[i].x;point_rgb.y=ccloud->points[i].y;point_rgb.z=ccloud->points[i].z;           point_rgb.r=int(img.at<cv::Vec3b>(p.y,p.x)[2]); //读取像素点的rgb值point_rgb.g=int(img.at<cv::Vec3b>(p.y,p.x)[1]);point_rgb.b=int(img.at<cv::Vec3b>(p.y,p.x)[0]);//对于投影后在图像中的点进行染色后加入点云rgb_cloudrgb_cloud->push_back(point_rgb); }}for(int i=0; i<pointInImg.size(); i++) { //在图像上画实心圆点cv::circle(img, pointInImg[i], 3, cv::Scalar(255,0,0), -1);}
}int main(int argc, char** argv) {cv::String argpathfile = "xxxx.yaml"; //这里输入标定参数的yaml信息string pcdPath = argv[1]; //命令行第一个参数时pcd的。cv::String imgPath = argv[2];//第二个参数是jpg文件的。fileArg fileinfo;calcuArg calout;pcl::PointCloud<pcl::PointXYZI>::Ptr  cloud_tmp (new pcl::PointCloud<pcl::PointXYZI> );pcl::PointCloud<pcl::PointXYZRGB>::Ptr  rgb_cloud (new pcl::PointCloud<pcl::PointXYZRGB> );if(pcl::io::loadPCDFile("./data/" + pcdPath,  *cloud_tmp)<0) { //打开pcd图像PCL_ERROR("Error loading cloud %s.\n", "pcdPath");return -1;}cv::Mat img = cv::imread("./data/" + imgPath, CV_LOAD_IMAGE_UNCHANGED); //打开jpg图像//cv::imshow("Img", img);//获取矩阵信息getMatrixFromFile(argpathfile, fileinfo, calout);//将点云信息投影到图像上projection(cloud_tmp, rgb_cloud ,img, fileinfo, calout);cv::imshow("Img", img);cv::waitKey(0);//点云可视化boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer ("3d Viewer"));viewer->setBackgroundColor (0, 0, 0);pcl::visualization::PointCloudColorHandlerRGBField<pcl::PointXYZRGB> rgb(rgb_cloud);viewer->addPointCloud<pcl::PointXYZRGB>(rgb_cloud,rgb,"sample cloud");viewer->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 3, "sample cloud");viewer->addCoordinateSystem (1.0);viewer->initCameraParameters ();while(!viewer->wasStopped()) {viewer->spinOnce();}return 0;
}

这里直接放相机视角下的点云信息。程序还可以生成投影了点云的图像信息,这个信息和标定的结果相关。
在这里插入图片描述

这篇关于将激光点云数据投影到二维图像及对三维点云上色的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/698740

相关文章

MySQL InnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据

《MySQLInnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据》mysql的ibdata文件被误删、被恶意修改,没有从库和备份数据的情况下的数据恢复,不能保证数据库所有表数据... 参考:mysql Innodb表空间卸载、迁移、装载的使用方法注意!此方法只适用于innodb_fi

mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据

《mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据》文章主要介绍了如何从.frm和.ibd文件恢复MySQLInnoDB表结构和数据,需要的朋友可以参... 目录一、恢复表结构二、恢复表数据补充方法一、恢复表结构(从 .frm 文件)方法 1:使用 mysq

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

golang获取prometheus数据(prometheus/client_golang包)

《golang获取prometheus数据(prometheus/client_golang包)》本文主要介绍了使用Go语言的prometheus/client_golang包来获取Prometheu... 目录1. 创建链接1.1 语法1.2 完整示例2. 简单查询2.1 语法2.2 完整示例3. 范围值

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

CSS3 最强二维布局系统之Grid 网格布局

《CSS3最强二维布局系统之Grid网格布局》CS3的Grid网格布局是目前最强的二维布局系统,可以同时对列和行进行处理,将网页划分成一个个网格,可以任意组合不同的网格,做出各种各样的布局,本文介... 深入学习 css3 目前最强大的布局系统 Grid 网格布局Grid 网格布局的基本认识Grid 网

Rust中的BoxT之堆上的数据与递归类型详解

《Rust中的BoxT之堆上的数据与递归类型详解》本文介绍了Rust中的BoxT类型,包括其在堆与栈之间的内存分配,性能优势,以及如何利用BoxT来实现递归类型和处理大小未知类型,通过BoxT,Rus... 目录1. Box<T> 的基础知识1.1 堆与栈的分工1.2 性能优势2.1 递归类型的问题2.2

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE