聚簇索引、非聚簇索引、回表、索引下推、覆盖索引

2024-02-10 16:44

本文主要是介绍聚簇索引、非聚簇索引、回表、索引下推、覆盖索引,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

聚簇索引(主键索引)

非叶子节点上存储的是索引值,叶子节点上存储的是整行记录。

非聚簇索引(非主键索引、二级索引)

非叶子节点上存储的都是索引值,叶子节点上存储的是主键的值。非聚簇索引需要回表,IO消耗。

回表

非聚簇索引先执行一次主键查询,再通过适配的主键的值之后,再进行一次二级索引,这个过程就是回表。

覆盖索引

一次索引就可以得到数据,无需回表。覆盖索引发生在联合索引,where条件遵循最左匹配原则,order by条件需要满足联合索引所有条件,否则产生回表,这个IO消耗非常大。

索引下推

发生在联合索引,多个字段进行联合索引的时候,遵循最左匹配原则,只是在索引上进行匹配,也就是说不会产生回表,通常发生在like语句,查询计划,Using index condition就是索引下推技术。

经验:优化mysql的时候,当遇到至少百万级表的数据的情况下,通过减少回表次数来优化sql语句是一种常用的手段之一,只要保证正确使用联合索引那么效率自然不会低下。

这篇关于聚簇索引、非聚簇索引、回表、索引下推、覆盖索引的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/697588

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

最大流=最小割=最小点权覆盖集=sum-最大点权独立集

二分图最小点覆盖和最大独立集都可以转化为最大匹配求解。 在这个基础上,把每个点赋予一个非负的权值,这两个问题就转化为:二分图最小点权覆盖和二分图最大点权独立集。   二分图最小点权覆盖     从x或者y集合中选取一些点,使这些点覆盖所有的边,并且选出来的点的权值尽可能小。 建模:     原二分图中的边(u,v)替换为容量为INF的有向边(u,v),设立源点s和汇点t

POJ3041 最小顶点覆盖

N*N的矩阵,有些格子有物体,每次消除一行或一列,最少要几次消灭完。 行i - >列j 连边,表示(i,j)处有物体,即 边表示 物体。 import java.io.BufferedReader;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWriter;impo

贝壳面试:什么是回表?什么是索引下推?

尼恩说在前面 在40岁老架构师 尼恩的读者交流群(50+)中,最近有小伙伴拿到了一线互联网企业如得物、阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试资格,遇到很多很重要的面试题: 1.谈谈你对MySQL 索引下推 的认识? 2.在MySQL中,索引下推 是如何实现的?请简述其工作原理。 3、说说什么是 回表,什么是 索引下推 ? 最近有小伙伴在面试 贝壳、soul,又遇到了相关的

Mysql高级篇(中)——索引介绍

Mysql高级篇(中)——索引介绍 一、索引本质二、索引优缺点三、索引分类(1)按数据结构分类(2)按功能分类(3) 按存储引擎分类(4) 按存储方式分类(5) 按使用方式分类 四、 索引基本语法(1)创建索引(2)查看索引(3)删除索引(4)ALTER 关键字创建/删除索引 五、适合创建索引的情况思考题 六、不适合创建索引的情况 一、索引本质 索引本质 是 一种数据结构,它用

ElasticSearch 6.1.1 通过Head插件,新建索引,添加文档,及其查询数据

ElasticSearch 6.1.1 通过Head插件,新建索引,添加文档,及其查询; 一、首先启动相关服务: 二、新建一个film索引: 三、建立映射: 1、通过Head插件: POST http://192.168.1.111:9200/film/_mapping/dongzuo/ {"properties": {"title": {"type":

ElasticSearch 6.1.1运用代码添加索引及其添加,修改,删除文档

1、新建一个MAVEN项目:ElasticSearchTest 2、修改pom.xml文件内容: <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.or

postgres数据库中如何看查询是否走索引,以及在什么情况下走索引

在 PostgreSQL 中,可以通过 EXPLAIN 或 EXPLAIN ANALYZE 查看查询计划,以判断查询是否使用了索引。除此之外,了解索引的使用条件对于优化查询性能也很重要。 1. 如何查看查询是否使用索引 使用 EXPLAIN 查看查询计划 EXPLAIN 显示 PostgreSQL 如何执行查询,包括是否使用索引。 EXPLAIN SELECT * FROM users WH

数据库系统 第42节 数据库索引简介

数据库索引是数据库表中一个或多个列的数据结构,用于加快数据检索速度。除了基础的B-Tree索引,其他类型的索引针对特定的数据类型和查询模式提供了优化。以下是几种不同类型的索引及其使用场景的详细说明和示例代码。 1. 位图索引 (Bitmap Index) 位图索引适用于具有少量不同值的列(例如性别、国家代码等),它使用位图来表示数据,从而提高查询效率。 适用场景:当列中的值域较小,且数据分布

PostgreSQL索引介绍

梦中彩虹   博客园首页新随笔联系管理 随笔 - 131  文章 - 1  评论 - 14 PostgreSQL索引介绍 INDEX 索引是增强数据库性能的常用方法。索引使得数据库在查找和检索数据库的特定行的时候比没有索引快的多。但索引也增加了整个数据库系统的开销,所以应该合理使用。 介绍 假设我们有一个类似这样的表: CREATE TABLE test1 (id integ