【最详解】如何进行点云的凹凸缺陷检测(opene3D)(完成度80%)

2024-02-08 14:28

本文主要是介绍【最详解】如何进行点云的凹凸缺陷检测(opene3D)(完成度80%),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 实现思路
    • 想法1
    • 想法2
    • 想法3
  • 补充
  • 实现
    • 想法1
    • 想法2
      • 代码
    • 想法3
      • 代码
  • 总结


前言

读前须知
首先我们得确保你已经完全知晓相关的基本的数学知识,其中包括用最小二乘法拟合曲二次曲面,以及曲面的曲率详细求解。若还是没弄清楚,则详细请看下面链接。

【点云、图像】学习中 常见的数学知识及其中的关系与python实战[更新中](建议从一个标题上从上往下看,比较循序渐进)

补充:曲率:反映曲面在某一点处的弯曲程度,它与该点及其邻近点的位置和法向量有关。

以及一些open3d的常见操作:
爆肝5万字❤️Open3D 点云数据处理基础(Python版)

先上结果:
在这里插入图片描述


实现思路

不同于常见的缺陷检测,如:划痕或者斑点这些肉眼可见的缺陷,凹凸性缺陷难以肉眼可见甚至得打光照射才能看见凹槽,这里我们使用深度摄像机(普通相机+深度信息),来采集深度信息。此时我们把图像称为深度图,当然深度图也可以转换为点云。

这里我们仅对点云这种数据进行处理。

要求:对异形曲面微细缺陷识别(我6月份之前要完成的毕设)
这里缺陷主要指凸起和凹槽。

想法1

想法1:如果是一个平面上出现凹槽或凸起的话,首先确立一个由大部分点拟合的平面,然后对不在此平面的点云进行高程分析,以确立凹陷或凸起程度。
(事实上不会很平,于是想法1排除,但可以用来做平面来做一个简单示例)

想法2

想法2:计算点云上每个点的领域曲率来描绘点的弯曲程度。

想法3

想法3:计算点云上每个点的高斯曲率和平均曲率来描绘点的弯曲程度。

补充

机器学习——详解KD-Tree原理

实现

想法1

暂无

想法2

想法2:
在求取完领域曲率的基础上,我们对其曲率的大小进行一个分割,并进行可视化。

这里进一步对这个领域曲率的定义进行详解。
首先,我们已经在这里的实战1了解到了领域曲率的求法。
在这里插入图片描述

基于邻域特征点提取和匹配的点云配准_李新春

可是这个定义我只在其他的博客中和下面这篇论文中找到定义,并无在wiki百科中找到相关阐述。

找了半天后依然无法解释其中原因,于是在参考了下面两篇博文后
如何理解矩阵特征值?
特征值的最大值与最小值
想出了这么一个合理的解释:
1、这个曲率定义的优点是,它不依赖于法向量的方向,而且它的值域是 [0, 1/3],这使得它比较容易进行归一化和可视化。

2、那么,为什么用最小的特征值除以特征值和,而不是用最大的特征值除以特征值和呢?

这是因为最小的特征值对应的特征向量是曲面的法向量,而最大的特征值对应的特征向量是曲面的主方向。

如果用最大的特征值除以特征值和,那么曲率的值就会与曲面的主方向的弯曲程度成正比,而与曲面的法向方向的弯曲程度无关。这样就会忽略掉曲面的凹凸变化,导致曲率的计算不准确。

如果用最小的特征值除以特征值和,那么曲率的值就会与曲面的法向方向的弯曲程度成正比,而与曲面的主方向的弯曲程度无关。这样就可以反映出曲面的凹凸变化,提高曲率的计算精度。

因此,用最小的特征值除以特征值和,而不是用最大的特征值除以特征值和,是为了更好地描述曲面的局部形状,而不是曲面的整体方向。

于是我们就可以坦然用这个定义来求取了。

代码

怕点云太多算不过来,首先对例子中的兔子点云进行了一个下采样。(如何获取兔子点云到时候再出教程)

import open3d as o3d
import numpy as npdef pca_compute(data, sort=True): #1、主成分分析average_data = np.mean(data, axis=0) # 求每一列的平均值,即求各个特征的平均值decentration_matrix = data - average_data  # 去中心化矩阵H = np.dot(decentration_matrix.T, decentration_matrix)  # 求协方差矩阵 #协方差是衡量两个变量关系的统计量,协方差为正表示两个变量正相关,为负表示两个变量负相关eigenvectors, eigenvalues, eigenvectors_T = np.linalg.svd(H) # 求特征值与特征向量 #H = UΣV^T #输出列向量、对角矩阵、行向量if sort:sort = eigenvalues.argsort()[::-1] # 从大到小排序 .argsort()是升序排序,[::-1]是将数组反转,实现降序排序eigenvalues = eigenvalues[sort] # 特征值  ## 使用索引来获取排序后的数组return eigenvaluesdef caculate_surface_curvature(radius,pcd):#2、计算点云的表面曲率cloud = pcdpoints = np.asarray(cloud.points) #点云转换为数组 点云数组形式为[[x1,y1,z1],[x2,y2,z2],...]kdtree = o3d.geometry.KDTreeFlann(cloud) #建立KDTreenum_points = len(cloud.points) #点云中点的个数curvature = []  # 储存表面曲率for i in range(num_points):k, idx, _ = kdtree.search_radius_vector_3d(cloud.points[i], radius) #返回邻域点的个数和索引neighbors = points[idx] #数组形式为[[x1,y1,z1],[x2,y2,z2],...]w = pca_compute(neighbors)#调用第1步  #由降序排序,w[2]为最小特征值  #np.zeros_like(w[2])生成与w[2]相同形状的全0数组delt = np.divide(w[2], np.sum(w)) #根据公式求取领域曲率curvature.append(delt)curvature = np.array(curvature, dtype=np.float64)return curvaturedef curvature_normal():#3、曲率归一化 从0-1/3归到0-1之间curvature = caculate_surface_curvature(radius,pcd) #调用第2步c_max = max(curvature)c_min = min(curvature)cur_normal = [(float(i) - c_min) / (c_max - c_min) for i in curvature] return cur_normaldef draw(cur_max,cur_min,pcd):#4、绘图cur_normal = curvature_normal()#调用第3步pcd.paint_uniform_color([0.5,0.5,0.5]) #初始化所有颜色为灰色for i in range(len(cur_normal)):if 0 < cur_normal[i] <= cur_min: #归一化后的曲率np.asarray(pcd.colors)[i] = [1, 0, 0]#红elif cur_min < cur_normal[i] <= cur_max:np.asarray(pcd.colors)[i] = [0, 1, 0]#绿elif cur_max < cur_normal[i] <= 1: np.asarray(pcd.colors)[i] = [0, 0, 1]#蓝# 可视化o3d.visualization.draw_geometries([pcd])cur_max = 0.7 
cur_min = 0.3 #曲率分割基准
radius = 0.05
voxel_size = 0.01 #越小密度越大
pcd = o3d.io.read_point_cloud("bunny.pcd")
print(pcd)
pcd = pcd.voxel_down_sample(voxel_size) #下采样
draw(cur_max,cur_min,pcd)

结果:
在这里插入图片描述
这个长度,宽度报错可以不管,有点子强迫症的可以在可视化改成:

    o3d.visualization.draw_geometries([pcd],window_name="可视化原始点云",width=800, height=800, left=50, top=50,mesh_show_back_face=False)

在这里插入图片描述
红色为曲率较低,绿色曲率中等,蓝色曲率较高。
发现效果上不太行,红色一些部分看着曲率也很高,甚至还出现了一个初始化时候的灰点,可能求邻近点的时候没取到?不曾得知。

想法3

首先我们在这里的高斯曲率和平均曲率求解有了一些认识。
附一张图:
在这里插入图片描述

代码

import open3d as o3d
import numpy as np
from scipy.optimize import curve_fitvoxel_size = 0.01 #越小密度越大
radius = 0.07
pcd = o3d.io.read_point_cloud("bunny.pcd")
pcd = pcd.voxel_down_sample(voxel_size) #下采样
cloud = pcd
points = np.asarray(cloud.points) #点云转换为数组 点云数组形式为[[x1,y1,z1],[x2,y2,z2],...]
kdtree = o3d.geometry.KDTreeFlann(cloud) #建立KDTree
num_points = len(cloud.points) #点云中点的个数
pcd.paint_uniform_color([1, 0, 0])  # 初始化所有颜色为红色
# 定义非线性函数,这里假设是一个二次曲面
def func(x, a, b, c, d, e, f):return a * x[0]**2 + b * x[1]**2 + c * x[0] * x[1] + d * x[0] + e * x[1] + f
def f(x, y):return popt[0]*x**2 +popt[1]*y**2 +popt[2]* x*y +popt[3]*x + popt[4]*y +popt[5]
# 定义曲面的梯度函数,即一阶偏导数
def gradient(f, x, y):# 使用中心差分法近似求导  #参考https://cloud.tencent.com/developer/article/1685164h = 1e-6 # 差分步长,可以根据精度要求调整df_dx = (f(x + h, y) - f(x - h, y)) / (2 * h) # 对x求偏导df_dy = (f(x, y + h) - f(x, y - h)) / (2 * h) # 对y求偏导return df_dx, df_dy
# 定义曲面的曲率函数,即二阶偏导数
def curvature(f, x, y):# 使用中心差分法近似求导h = 1e-6 # 差分步长,可以根据精度要求调整d2f_dx2 = (f(x + h, y) - 2 * f(x, y) + f(x - h, y)) / (h ** 2) # 对x求二阶偏导d2f_dy2 = (f(x, y + h) - 2 * f(x, y) + f(x, y - h)) / (h ** 2) # 对y求二阶偏导d2f_dxdy = (f(x + h, y + h) - f(x + h, y - h) - f(x - h, y + h) + f(x - h, y - h)) / (4 * h ** 2) # 对xy求混合偏导# 根据公式计算高斯曲率K和平均曲率Hdf_dx, df_dy = gradient(f, x, y) # 调用梯度函数求一阶偏导E = 1 + df_dx ** 2F = df_dx * df_dyG = 1 + df_dy ** 2L = d2f_dx2 / np.sqrt(1 + df_dx ** 2 + df_dy ** 2) #np.sqrt()表示开方M = d2f_dxdy / np.sqrt(1 + df_dx ** 2 + df_dy ** 2)N = d2f_dy2 / np.sqrt(1 + df_dx ** 2 + df_dy ** 2)K = (L * N - M ** 2) / (E * G - F ** 2) # 高斯曲率H = (E * N + G * L - 2 * F * M) / (2 * (E * G - F ** 2)) # 平均曲率return K, Hcurvatures = []  
for i in range(num_points):k, idx, _ = kdtree.search_radius_vector_3d(cloud.points[i], radius) #返回邻域点的个数和索引neighbors = points[idx] #数组形式为[[x1,y1,z1],[x2,y2,z2],...]#print(k)Y = neighbors[:, 2] # 因变量X = neighbors[:, [0,1]] # 自变量 [[2,3],[1,1],[8,9],[11,12],[4,5],[8,9]] 6*2popt, pcov = curve_fit(func, xdata=X.T,ydata= Y)x = cloud.points[i][0] # 某一点的x坐标y = cloud.points[i][1] # 某一点的y坐标K, H = curvature(f, x, y) # 计算该点的曲率curvatures.append([K,H])print(curvatures)
for i in range(len(curvatures)):if -0.05<curvatures[i][0] < 0.05 and -0.05<curvatures[i][1] <0.05: #平坦np.asarray(pcd.colors)[i] = [0, 0, 0]#黑elif -0.05<curvatures[i][0] < 0.05 and curvatures[i][1] >0.05:  #凸np.asarray(pcd.colors)[i] = [1, 0, 0]#红elif -0.05<curvatures[i][0] < 0.05 and -0.05<curvatures[i][1] <0.05: #凹np.asarray(pcd.colors)[i] = [0, 1, 0]#绿elif curvatures[i][0] < -0.05 and curvatures[i][1] >0.05: #鞍形脊 大部分凸,少部分凹np.asarray(pcd.colors)[i] = [0, 0, 1]#蓝elif curvatures[i][0] < -0.05 and curvatures[i][1] <-0.05: #鞍形谷 大部分凹,少部分凸np.asarray(pcd.colors)[i] = [0, 1, 1]#青elif curvatures[i][0] > 0.05 and curvatures[i][1] >0.05: #峰 np.asarray(pcd.colors)[i] = [1, 0, 1]#紫elif curvatures[i][0] > 0.05 and curvatures[i][1] <-0.05: #阱np.asarray(pcd.colors)[i] = [1, 1, 0]#黄#显示点云
o3d.visualization.draw_geometries([pcd])

结果:
在这里插入图片描述
结果出奇的好,每个点都进行了划分,比想法1好太多了。这里暂时用兔子点云测试,到时候创造一些平面点云再来测试一下。


总结

学习东西都不是一蹴而就的,果然还是得一步一步脚踏实地地学才学的明白。chatgpt是个好东西,只有你也会点东西时,它才会回答的正确,不能轻信之。

未完成:
ps:1、兔子点云pcd读取
2、创建平面点云
3、返回面积、深度信息

这篇关于【最详解】如何进行点云的凹凸缺陷检测(opene3D)(完成度80%)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/691300

相关文章

详解如何通过Python批量转换图片为PDF

《详解如何通过Python批量转换图片为PDF》:本文主要介绍如何基于Python+Tkinter开发的图片批量转PDF工具,可以支持批量添加图片,拖拽等操作,感兴趣的小伙伴可以参考一下... 目录1. 概述2. 功能亮点2.1 主要功能2.2 界面设计3. 使用指南3.1 运行环境3.2 使用步骤4. 核

一文详解JavaScript中的fetch方法

《一文详解JavaScript中的fetch方法》fetch函数是一个用于在JavaScript中执行HTTP请求的现代API,它提供了一种更简洁、更强大的方式来处理网络请求,:本文主要介绍Jav... 目录前言什么是 fetch 方法基本语法简单的 GET 请求示例代码解释发送 POST 请求示例代码解释

详解nginx 中location和 proxy_pass的匹配规则

《详解nginx中location和proxy_pass的匹配规则》location是Nginx中用来匹配客户端请求URI的指令,决定如何处理特定路径的请求,它定义了请求的路由规则,后续的配置(如... 目录location 的作用语法示例:location /www.chinasem.cntestproxy

CSS will-change 属性示例详解

《CSSwill-change属性示例详解》will-change是一个CSS属性,用于告诉浏览器某个元素在未来可能会发生哪些变化,本文给大家介绍CSSwill-change属性详解,感... will-change 是一个 css 属性,用于告诉浏览器某个元素在未来可能会发生哪些变化。这可以帮助浏览器优化

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

详解C++中类的大小决定因数

《详解C++中类的大小决定因数》类的大小受多个因素影响,主要包括成员变量、对齐方式、继承关系、虚函数表等,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录1. 非静态数据成员示例:2. 数据对齐(Padding)示例:3. 虚函数(vtable 指针)示例:4. 继承普通继承虚继承5.

前端高级CSS用法示例详解

《前端高级CSS用法示例详解》在前端开发中,CSS(层叠样式表)不仅是用来控制网页的外观和布局,更是实现复杂交互和动态效果的关键技术之一,随着前端技术的不断发展,CSS的用法也日益丰富和高级,本文将深... 前端高级css用法在前端开发中,CSS(层叠样式表)不仅是用来控制网页的外观和布局,更是实现复杂交

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使