强化学习 | 基于 Q-Learning 算法解决 Treasure on Right 游戏

2024-02-08 13:52

本文主要是介绍强化学习 | 基于 Q-Learning 算法解决 Treasure on Right 游戏,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Hi,大家好,我是半亩花海。在本篇技术博客中,我们将探讨如何使用 Q-Learning 算法来解决 Treasure on Right 游戏,实现一个简单的强化学习


一、游戏背景

Treasure on Right 游戏——一个简单的命令行寻宝游戏,是一个经典的强化学习示例,它模拟了一个智能体在有限状态空间中寻找宝藏的过程。游戏环境由一个线性状态空间组成,智能体可以执行两个动作:向左移动或向右移动。目标是让智能体学会在状态空间中移动,找到宝藏,它位于状态空间的最右侧。


二、Q-Learning 算法简介

Q-Learning 是一种基于值函数的强化学习算法,用于解决智能体与环境交互的问题。它通过迭代更新状态-动作对的 Q 值来优化策略。Q 值表示在特定状态下采取特定动作的长期回报,智能体通过学习最优的 Q 值来选择最佳动作。


三、代码拆解

1. 导入必要的库

首先导入 pandas、numpy 和 time 库,以便进行数据处理、数组操作和控制程序运行时间。

import pandas as pd
import numpy as np
import time

2. 定义常量和参数

在这个部分,我们定义了游戏中所需的常量和参数,包括状态数量、动作集合、epsilon 贪婪度、学习率、奖励衰减因子等。

N_STATES = 6                 # 状态数量
ACTIONS = ["left", "right"]  # 动作集合
EPSILON = 0.9                # epsilon-greedy算法中的贪婪度
ALPHA = 0.1                  # 学习率
GAMMA = 0.9                  # 奖励衰减因子
MAX_EPISODES = 15            # 最大训练轮数
FRESH_TIME = 0.3             # 每一步的时间间隔
TerminalFlag = "terminal"    # 终止状态标识

3. 创建Q表

我们定义了一个函数来创建 Q 表格,用于存储状态-动作对的 Q 值。初始时,所有的 Q 值都被初始化为 0。

def build_q_table(n_states, actions):return pd.DataFrame(  np.zeros((n_states, len(actions))),  columns=actions  )

4. 选择动作

这个函数根据当前状态和 Q 表格选择动作。我们使用 ε-greedy 策略,以一定的概率随机选择动作,以便在探索和利用之间取得平衡。

def choose_action(state, q_table):state_table = q_table.loc[state, :]if (np.random.uniform() > EPSILON) or ((state_table == 0).all()):action_name = np.random.choice(ACTIONS)else:action_name = state_table.idxmax()return action_name

5. 获取环境反馈

这个函数模拟了智能体与环境的交互过程,根据智能体采取的动作返回下一个状态和相应的奖励。

def get_env_feedback(S, A):if A == "right":if S == N_STATES - 2:S_, R = TerminalFlag, 1else:S_, R = S + 1, 0else:S_, R = max(0, S - 1), 0return S_, R

6. 更新环境

这个函数用于更新环境的显示,以便智能体能够观察到当前状态。

def update_env(S, episode, step_counter):env_list = ["-"] * (N_STATES - 1) + ["T"]  if S == TerminalFlag:  interaction = 'Episode %s: total_steps = %s' % (episode + 1, step_counter)  print(interaction)  time.sleep(2)  else:  env_list[S] = '0'  interaction = ''.join(env_list)  print(interaction)  time.sleep(FRESH_TIME)  

7. Q-learning主循环

这个函数包含了整个Q-learning的主要逻辑,包括选择动作、获取环境反馈和更新Q值等步骤。

def rl():q_table = build_q_table(N_STATES, ACTIONS)for episode in range(MAX_EPISODES): step_counter = 0S = 0is_terminated = Falseupdate_env(S, episode, step_counter)  while not is_terminated:  A = choose_action(S, q_table)  S_, R = get_env_feedback(S, A)  q_predict = q_table.loc[S, A]  if S_ != TerminalFlag:  q_target = R + GAMMA * q_table.loc[S_, :].max()  else:  q_target = R  is_terminated = True  q_table.loc[S, A] += ALPHA * (q_target - q_predict)  S = S_  update_env(S, episode, step_counter + 1)  step_counter += 1  return q_table

8. 主程序入口

在这部分代码中,我们运行整个程序,执行Q-learning算法并输出最终的Q表格。

if __name__ == '__main__':q_table = rl()  print(q_table)  

四、项目意义和应用价值

Treasure on Right 游戏作为一个简单的强化学习示例,展示了 Q-Learning 算法在解决智能体与环境交互问题中的应用。通过实现这个项目,我们可以深入理解强化学习算法的工作原理,并了解如何利用这种算法解决实际问题。Q-Learning 算法及其变体在许多领域都有广泛的应用,如机器人控制、自动驾驶、游戏设计等。通过掌握这种算法,我们可以为各种应用场景开发智能决策系统,从而提高效率、优化资源利用,甚至解决复杂的实时决策问题。

在学术界和工业界,Q-Learning 算法已经被广泛应用,并且不断被改进和扩展,以解决更加复杂的问题。因此,掌握 Q-Learning 算法对于从事人工智能和机器学习领域的工程师和研究人员来说是非常重要的。


五、完整代码

# 使用Q-Learning算法来实现treasure on right游戏(宝藏在最右边的位置:训练一个智能体去获得这个宝藏)
import pandas as pd
import numpy as np
import timeN_STATES = 6                 # 状态数量
ACTIONS = ["left", "right"]  # 动作集合
EPSILON = 0.9                # epsilon-greedy算法中的贪婪度
ALPHA = 0.1                  # 学习率
GAMMA = 0.9                  # 奖励衰减因子
MAX_EPISODES = 15            # 最大训练轮数
FRESH_TIME = 0.3             # 每一步的时间间隔
TerminalFlag = "terminal"    # 终止状态标识# 创建Q表
def build_q_table(n_states, actions):return pd.DataFrame(  # 创建一个DataFrame对象np.zeros((n_states, len(actions))),  # 用0初始化一个n_states行,len(actions)列的数组columns=actions  # 设置DataFrame的列名为动作列表)# 根据当前状态选择动作
def choose_action(state, q_table):state_table = q_table.loc[state, :]  # 获取Q表中对应状态行的值if (np.random.uniform() > EPSILON) or ((state_table == 0).all()):  # 判断是否随机选择动作action_name = np.random.choice(ACTIONS)  # 如果满足条件,随机选择一个动作else:action_name = state_table.idxmax()  # 否则选择具有最大值的动作return action_name  # 返回选择的动作# 获取环境的反馈,包括下一个状态和奖励
def get_env_feedback(S, A):if A == "right":  # 如果动作是向右移动if S == N_STATES - 2:  # 如果当前状态是倒数第二个状态S_, R = TerminalFlag, 1  # 下一个状态是终止状态,奖励为1else:  # 否则S_, R = S + 1, 0  # 下一个状态向右移动一步,奖励为0else:  # 如果动作不是向右移动S_, R = max(0, S - 1), 0  # 下一个状态向左移动一步,奖励为0return S_, R  # 返回下一个状态和奖励# 更新环境
def update_env(S, episode, step_counter):env_list = ["-"] * (N_STATES - 1) + ["T"]  # 创建一个环境列表,长度为N_STATES-1,最后一个元素为终止标志"T"if S == TerminalFlag:  # 如果当前状态为终止状态interaction = 'Episode %s: total_steps = %s' % (episode + 1, step_counter)  # 打印本次训练的步数print(interaction)  # 打印信息time.sleep(2)  # 等待2秒else:  # 如果当前状态不是终止状态env_list[S] = '0'  # 在环境列表中将当前状态位置标记为'0'interaction = ''.join(env_list)  # 将环境列表转换为字符串print(interaction)  # 打印环境状态time.sleep(FRESH_TIME)  # 等待一段时间# Q-learning主循环
def rl():# 创建Q表: 存储的表记录的是, 在状态S下, 每个行为A的Q值q_table = build_q_table(N_STATES, ACTIONS)for episode in range(MAX_EPISODES):       # 对于每一轮训练(episode)step_counter = 0                      # 记录每个episode的步数S = 0                                 # 初始状态is_terminated = False                 # 用于判断是否到达终止状态update_env(S, episode, step_counter)  # 更新环境显示# 在未到达终止状态的情况下进行循环while not is_terminated:            # 如果未到达终止状态A = choose_action(S, q_table)   # 选择动作S_, R = get_env_feedback(S, A)  # 获取环境反馈(下一个状态和奖励)q_predict = q_table.loc[S, A]   # 获取Q值的预测值# 根据下一个状态是否为终止状态更新Q值的目标值if S_ != TerminalFlag:                               # 如果下一个状态不是终止状态q_target = R + GAMMA * q_table.loc[S_, :].max()  # 使用贝尔曼方程计算目标Q值else:                                                # 如果下一个状态是终止状态q_target = R                                     # 目标Q值为即时奖励is_terminated = True                             # 到达终止状态q_table.loc[S, A] += ALPHA * (q_target - q_predict)  # 使用Q-learning更新Q表S = S_                                               # 更新当前状态update_env(S, episode, step_counter + 1)             # 更新环境显示step_counter += 1                                    # 步数加1return q_tableif __name__ == '__main__':q_table = rl()  # 运行Q-learning算法print(q_table)  # 打印Q表

这篇关于强化学习 | 基于 Q-Learning 算法解决 Treasure on Right 游戏的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/691225

相关文章

idea maven编译报错Java heap space的解决方法

《ideamaven编译报错Javaheapspace的解决方法》这篇文章主要为大家详细介绍了ideamaven编译报错Javaheapspace的相关解决方法,文中的示例代码讲解详细,感兴趣的... 目录1.增加 Maven 编译的堆内存2. 增加 IntelliJ IDEA 的堆内存3. 优化 Mave

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Feign Client超时时间设置不生效的解决方法

《FeignClient超时时间设置不生效的解决方法》这篇文章主要为大家详细介绍了FeignClient超时时间设置不生效的原因与解决方法,具有一定的的参考价值,希望对大家有一定的帮助... 在使用Feign Client时,可以通过两种方式来设置超时时间:1.针对整个Feign Client设置超时时间

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

springboot报错Invalid bound statement (not found)的解决

《springboot报错Invalidboundstatement(notfound)的解决》本文主要介绍了springboot报错Invalidboundstatement(not... 目录一. 问题描述二.解决问题三. 添加配置项 四.其他的解决方案4.1 Mapper 接口与 XML 文件不匹配