强化学习 | 基于 Q-Learning 算法解决 Treasure on Right 游戏

2024-02-08 13:52

本文主要是介绍强化学习 | 基于 Q-Learning 算法解决 Treasure on Right 游戏,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Hi,大家好,我是半亩花海。在本篇技术博客中,我们将探讨如何使用 Q-Learning 算法来解决 Treasure on Right 游戏,实现一个简单的强化学习


一、游戏背景

Treasure on Right 游戏——一个简单的命令行寻宝游戏,是一个经典的强化学习示例,它模拟了一个智能体在有限状态空间中寻找宝藏的过程。游戏环境由一个线性状态空间组成,智能体可以执行两个动作:向左移动或向右移动。目标是让智能体学会在状态空间中移动,找到宝藏,它位于状态空间的最右侧。


二、Q-Learning 算法简介

Q-Learning 是一种基于值函数的强化学习算法,用于解决智能体与环境交互的问题。它通过迭代更新状态-动作对的 Q 值来优化策略。Q 值表示在特定状态下采取特定动作的长期回报,智能体通过学习最优的 Q 值来选择最佳动作。


三、代码拆解

1. 导入必要的库

首先导入 pandas、numpy 和 time 库,以便进行数据处理、数组操作和控制程序运行时间。

import pandas as pd
import numpy as np
import time

2. 定义常量和参数

在这个部分,我们定义了游戏中所需的常量和参数,包括状态数量、动作集合、epsilon 贪婪度、学习率、奖励衰减因子等。

N_STATES = 6                 # 状态数量
ACTIONS = ["left", "right"]  # 动作集合
EPSILON = 0.9                # epsilon-greedy算法中的贪婪度
ALPHA = 0.1                  # 学习率
GAMMA = 0.9                  # 奖励衰减因子
MAX_EPISODES = 15            # 最大训练轮数
FRESH_TIME = 0.3             # 每一步的时间间隔
TerminalFlag = "terminal"    # 终止状态标识

3. 创建Q表

我们定义了一个函数来创建 Q 表格,用于存储状态-动作对的 Q 值。初始时,所有的 Q 值都被初始化为 0。

def build_q_table(n_states, actions):return pd.DataFrame(  np.zeros((n_states, len(actions))),  columns=actions  )

4. 选择动作

这个函数根据当前状态和 Q 表格选择动作。我们使用 ε-greedy 策略,以一定的概率随机选择动作,以便在探索和利用之间取得平衡。

def choose_action(state, q_table):state_table = q_table.loc[state, :]if (np.random.uniform() > EPSILON) or ((state_table == 0).all()):action_name = np.random.choice(ACTIONS)else:action_name = state_table.idxmax()return action_name

5. 获取环境反馈

这个函数模拟了智能体与环境的交互过程,根据智能体采取的动作返回下一个状态和相应的奖励。

def get_env_feedback(S, A):if A == "right":if S == N_STATES - 2:S_, R = TerminalFlag, 1else:S_, R = S + 1, 0else:S_, R = max(0, S - 1), 0return S_, R

6. 更新环境

这个函数用于更新环境的显示,以便智能体能够观察到当前状态。

def update_env(S, episode, step_counter):env_list = ["-"] * (N_STATES - 1) + ["T"]  if S == TerminalFlag:  interaction = 'Episode %s: total_steps = %s' % (episode + 1, step_counter)  print(interaction)  time.sleep(2)  else:  env_list[S] = '0'  interaction = ''.join(env_list)  print(interaction)  time.sleep(FRESH_TIME)  

7. Q-learning主循环

这个函数包含了整个Q-learning的主要逻辑,包括选择动作、获取环境反馈和更新Q值等步骤。

def rl():q_table = build_q_table(N_STATES, ACTIONS)for episode in range(MAX_EPISODES): step_counter = 0S = 0is_terminated = Falseupdate_env(S, episode, step_counter)  while not is_terminated:  A = choose_action(S, q_table)  S_, R = get_env_feedback(S, A)  q_predict = q_table.loc[S, A]  if S_ != TerminalFlag:  q_target = R + GAMMA * q_table.loc[S_, :].max()  else:  q_target = R  is_terminated = True  q_table.loc[S, A] += ALPHA * (q_target - q_predict)  S = S_  update_env(S, episode, step_counter + 1)  step_counter += 1  return q_table

8. 主程序入口

在这部分代码中,我们运行整个程序,执行Q-learning算法并输出最终的Q表格。

if __name__ == '__main__':q_table = rl()  print(q_table)  

四、项目意义和应用价值

Treasure on Right 游戏作为一个简单的强化学习示例,展示了 Q-Learning 算法在解决智能体与环境交互问题中的应用。通过实现这个项目,我们可以深入理解强化学习算法的工作原理,并了解如何利用这种算法解决实际问题。Q-Learning 算法及其变体在许多领域都有广泛的应用,如机器人控制、自动驾驶、游戏设计等。通过掌握这种算法,我们可以为各种应用场景开发智能决策系统,从而提高效率、优化资源利用,甚至解决复杂的实时决策问题。

在学术界和工业界,Q-Learning 算法已经被广泛应用,并且不断被改进和扩展,以解决更加复杂的问题。因此,掌握 Q-Learning 算法对于从事人工智能和机器学习领域的工程师和研究人员来说是非常重要的。


五、完整代码

# 使用Q-Learning算法来实现treasure on right游戏(宝藏在最右边的位置:训练一个智能体去获得这个宝藏)
import pandas as pd
import numpy as np
import timeN_STATES = 6                 # 状态数量
ACTIONS = ["left", "right"]  # 动作集合
EPSILON = 0.9                # epsilon-greedy算法中的贪婪度
ALPHA = 0.1                  # 学习率
GAMMA = 0.9                  # 奖励衰减因子
MAX_EPISODES = 15            # 最大训练轮数
FRESH_TIME = 0.3             # 每一步的时间间隔
TerminalFlag = "terminal"    # 终止状态标识# 创建Q表
def build_q_table(n_states, actions):return pd.DataFrame(  # 创建一个DataFrame对象np.zeros((n_states, len(actions))),  # 用0初始化一个n_states行,len(actions)列的数组columns=actions  # 设置DataFrame的列名为动作列表)# 根据当前状态选择动作
def choose_action(state, q_table):state_table = q_table.loc[state, :]  # 获取Q表中对应状态行的值if (np.random.uniform() > EPSILON) or ((state_table == 0).all()):  # 判断是否随机选择动作action_name = np.random.choice(ACTIONS)  # 如果满足条件,随机选择一个动作else:action_name = state_table.idxmax()  # 否则选择具有最大值的动作return action_name  # 返回选择的动作# 获取环境的反馈,包括下一个状态和奖励
def get_env_feedback(S, A):if A == "right":  # 如果动作是向右移动if S == N_STATES - 2:  # 如果当前状态是倒数第二个状态S_, R = TerminalFlag, 1  # 下一个状态是终止状态,奖励为1else:  # 否则S_, R = S + 1, 0  # 下一个状态向右移动一步,奖励为0else:  # 如果动作不是向右移动S_, R = max(0, S - 1), 0  # 下一个状态向左移动一步,奖励为0return S_, R  # 返回下一个状态和奖励# 更新环境
def update_env(S, episode, step_counter):env_list = ["-"] * (N_STATES - 1) + ["T"]  # 创建一个环境列表,长度为N_STATES-1,最后一个元素为终止标志"T"if S == TerminalFlag:  # 如果当前状态为终止状态interaction = 'Episode %s: total_steps = %s' % (episode + 1, step_counter)  # 打印本次训练的步数print(interaction)  # 打印信息time.sleep(2)  # 等待2秒else:  # 如果当前状态不是终止状态env_list[S] = '0'  # 在环境列表中将当前状态位置标记为'0'interaction = ''.join(env_list)  # 将环境列表转换为字符串print(interaction)  # 打印环境状态time.sleep(FRESH_TIME)  # 等待一段时间# Q-learning主循环
def rl():# 创建Q表: 存储的表记录的是, 在状态S下, 每个行为A的Q值q_table = build_q_table(N_STATES, ACTIONS)for episode in range(MAX_EPISODES):       # 对于每一轮训练(episode)step_counter = 0                      # 记录每个episode的步数S = 0                                 # 初始状态is_terminated = False                 # 用于判断是否到达终止状态update_env(S, episode, step_counter)  # 更新环境显示# 在未到达终止状态的情况下进行循环while not is_terminated:            # 如果未到达终止状态A = choose_action(S, q_table)   # 选择动作S_, R = get_env_feedback(S, A)  # 获取环境反馈(下一个状态和奖励)q_predict = q_table.loc[S, A]   # 获取Q值的预测值# 根据下一个状态是否为终止状态更新Q值的目标值if S_ != TerminalFlag:                               # 如果下一个状态不是终止状态q_target = R + GAMMA * q_table.loc[S_, :].max()  # 使用贝尔曼方程计算目标Q值else:                                                # 如果下一个状态是终止状态q_target = R                                     # 目标Q值为即时奖励is_terminated = True                             # 到达终止状态q_table.loc[S, A] += ALPHA * (q_target - q_predict)  # 使用Q-learning更新Q表S = S_                                               # 更新当前状态update_env(S, episode, step_counter + 1)             # 更新环境显示step_counter += 1                                    # 步数加1return q_tableif __name__ == '__main__':q_table = rl()  # 运行Q-learning算法print(q_table)  # 打印Q表

这篇关于强化学习 | 基于 Q-Learning 算法解决 Treasure on Right 游戏的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/691225

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

如何解决线上平台抽佣高 线下门店客流少的痛点!

目前,许多传统零售店铺正遭遇客源下降的难题。尽管广告推广能带来一定的客流,但其费用昂贵。鉴于此,众多零售商纷纷选择加入像美团、饿了么和抖音这样的大型在线平台,但这些平台的高佣金率导致了利润的大幅缩水。在这样的市场环境下,商家之间的合作网络逐渐成为一种有效的解决方案,通过资源和客户基础的共享,实现共同的利益增长。 以最近在上海兴起的一个跨行业合作平台为例,该平台融合了环保消费积分系统,在短