基于BatchNorm的模型剪枝【详解+代码】

2024-02-08 13:04

本文主要是介绍基于BatchNorm的模型剪枝【详解+代码】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1、BatchNorm(BN)
    • 2、L1与L2正则化
      • 2.1 L1与L2的导数及其应用
      • 2.2 论文核心点
    • 3、模型剪枝的流程

  • ICCV经典论文,通俗易懂!论文题目:Learning Efficient Convolutional Networks through Network Slimming
  • 卷积后能得到多个特征图,这些图一定都重要吗?
  • 训练模型的时候能否加入一些策略,让权重参数体现出主次之分?
  • 以上这两点就是论文的核心,先看论文再看源码其实并不难!

如下图所示,每个conv-layer会被计算相应的channel scaling factors,然后根据channel scaling factors筛选conv-layer,达到模型瘦身的作用,图中的1.170,0.001,0.290等就是下面我们将要介绍的学习参数 γ \gamma γ 值,

在这里插入图片描述

1、BatchNorm(BN)

Network slimming,就是利用BN层中的缩放因子 γ \gamma γ
整体感觉就是一个归一化操作,但是BN中还额外引入了两个可训练的参数: γ \gamma γ β \beta β

BN的公式:
x ^ ( k ) = γ ⋅ x ( k ) − E [ x ( k ) ] V a r [ x ( k ) ] + β \hat x^{(k)}=\gamma \cdot \frac{x^{(k)}-E[x^{(k)}]}{\sqrt{Var[x^{(k)}]}}+\beta x^(k)=γVar[x(k)] x(k)E[x(k)]+β

  • 如果训练时候输入数据的分布总是改变,网络模型还能学的好吗?
    • 不能,网络刚开始学起来会很差,而且还容易导致过拟合,
  • 对于卷积层来说,它的输入可不是只有原始输入数据
    • 而是卷积层+BN层+relu层输出的数据,如果输入只来自卷积层,那么数据不在同一个分布内,网络刚开始学起来会很差,而且还容易导致过拟合
  • 以sigmoid为例,如果不经过BN层,很多输出值越来也偏离,导致模型收敛越来越难!
    在这里插入图片描述

A、BN的作用

  • BN要做的就是把越来越偏离的分布给他拉回来!
  • 再重新规范化到均值为0方差为1的标准正态分布
  • 这样能够使得激活函数在数值层面更敏感,训练更快
  • 有一种感觉:经过BN后,把数值分布强制分布在了非线性函数的线性区域中,而图像本身是非线性的,所以这是一个缺陷,所以就引入了 γ \gamma γ 参数,

B、BatchNorm参数

  • 如果都是线性的了,神经网络还有意义吗?
  • BN另一方面还需要保证一些非线性,对规范化后的结果再进行变换
  • 这两个参数是训练得到的: y ( k ) = γ x ^ ( k ) + β ( k ) y^{(k)} = \gamma \hat x^{(k)} + \beta ^{(k)} y(k)=γx^(k)+β(k)
  • 感觉就是从正态分布进行一些改变,拉动一下,变一下形状!

图中的1.170,0.001,0.290等就是学习参数 γ \gamma γ 值, γ \gamma γ 值越大则说明该特征层越重要,越小则不重要,

在这里插入图片描述

2、L1与L2正则化

如果学习到的 γ \gamma γ 值是1.17,1.16,1.15等,那如何筛选比较重要的 γ \gamma γ 值呢?使用L1正则化就可以实现筛选比较重要的 γ \gamma γ 值,

  • 论文中提出:训练时使用L1正则化能对参数进行稀疏作用,
  • L1:对权重参数稀疏与特征选择,会对一些权重参数稀疏化接近于0,
  • L2:平滑特征,会对权重参数都接近于0,

L1正则化: J ( θ → ) = 1 2 ∑ i = 1 m ( h θ ~ ( x ( i ) ) − y ( i ) ) 2 + λ ∑ j = 1 n ∣ θ j ∣ J\big(\overrightarrow{\theta}\big)= \frac{1}{2}\sum_{i=1}^m\big(h_{\widetilde{\theta}}(x^{(i)})-y^{(i)}\big)^2+\lambda \sum_{j=1}^n|\theta_j| J(θ )=21i=1m(hθ (x(i))y(i))2+λj=1nθj

L2正则化: J ( θ → ) = 1 2 ∑ i = 1 m ( h θ ~ ( x ( i ) ) − y ( i ) ) 2 + λ ∑ j = 1 n θ j 2 J\big(\overrightarrow{\theta}\big)= \frac{1}{2}\sum_{i=1}^m\big(h_{\widetilde{\theta}}(x^{(i)})-y^{(i)}\big)^2+\lambda \sum_{j=1}^n\theta_j^2 J(θ )=21i=1m(hθ (x(i))y(i))2+λj=1nθj2

其中 h θ ~ ( x ( i ) ) h_{\widetilde{\theta}}(x^{(i)}) hθ (x(i))是预测值, y ( i ) y^{(i)} y(i)是标签值,

2.1 L1与L2的导数及其应用

L1的导数:

L1求导后为:sign( θ \theta θ),相当于稳定前进,都为 ± 1 \pm 1 ±1;所以迭代次数够多,有些特征层权重 θ \theta θ 最后可以学成0了,所以L1可以做稀疏化,

在这里插入图片描述

L2的导数:

L2求导为:θ,梯度下降过程越来越慢,相应的权重参数都接近0,起到平滑的作用,

在这里插入图片描述

2.2 论文核心点

以BN中的 γ \gamma γ 为切入点,即 γ \gamma γ 越小,其对应的特征图越不重要,
为了使得 γ \gamma γ 能有特征选择的作用,引入L1正则来控制 γ \gamma γ

L = ∑ ( x , y ) l ( f ( x , W ) , y ) + λ ∑ γ ∈ Γ g ( γ ) L=\sum_{(x,y)}l\big(f(x,W),y\big)+\lambda\sum_{\gamma \in \Gamma}g(\gamma) L=(x,y)l(f(x,W),y)+λγΓg(γ)

其中 l ( f ( x , W ) , y ) l\big(f(x,W),y\big) l(f(x,W),y)是loss损失函数, γ \gamma γ 是BN中的参数 γ \gamma γ

3、模型剪枝的流程

训练-剪枝-再训练,整体流程如下图所示,

在这里插入图片描述

这篇关于基于BatchNorm的模型剪枝【详解+代码】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/691124

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Java访问修饰符public、private、protected及默认访问权限详解

《Java访问修饰符public、private、protected及默认访问权限详解》:本文主要介绍Java访问修饰符public、private、protected及默认访问权限的相关资料,每... 目录前言1. public 访问修饰符特点:示例:适用场景:2. private 访问修饰符特点:示例:

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

详解Java如何向http/https接口发出请求

《详解Java如何向http/https接口发出请求》这篇文章主要为大家详细介绍了Java如何实现向http/https接口发出请求,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 用Java发送web请求所用到的包都在java.net下,在具体使用时可以用如下代码,你可以把它封装成一

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

mac中资源库在哪? macOS资源库文件夹详解

《mac中资源库在哪?macOS资源库文件夹详解》经常使用Mac电脑的用户会发现,找不到Mac电脑的资源库,我们怎么打开资源库并使用呢?下面我们就来看看macOS资源库文件夹详解... 在 MACOS 系统中,「资源库」文件夹是用来存放操作系统和 App 设置的核心位置。虽然平时我们很少直接跟它打交道,但了

关于Maven中pom.xml文件配置详解

《关于Maven中pom.xml文件配置详解》pom.xml是Maven项目的核心配置文件,它描述了项目的结构、依赖关系、构建配置等信息,通过合理配置pom.xml,可以提高项目的可维护性和构建效率... 目录1. POM文件的基本结构1.1 项目基本信息2. 项目属性2.1 引用属性3. 项目依赖4. 构