基于BatchNorm的模型剪枝【详解+代码】

2024-02-08 13:04

本文主要是介绍基于BatchNorm的模型剪枝【详解+代码】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1、BatchNorm(BN)
    • 2、L1与L2正则化
      • 2.1 L1与L2的导数及其应用
      • 2.2 论文核心点
    • 3、模型剪枝的流程

  • ICCV经典论文,通俗易懂!论文题目:Learning Efficient Convolutional Networks through Network Slimming
  • 卷积后能得到多个特征图,这些图一定都重要吗?
  • 训练模型的时候能否加入一些策略,让权重参数体现出主次之分?
  • 以上这两点就是论文的核心,先看论文再看源码其实并不难!

如下图所示,每个conv-layer会被计算相应的channel scaling factors,然后根据channel scaling factors筛选conv-layer,达到模型瘦身的作用,图中的1.170,0.001,0.290等就是下面我们将要介绍的学习参数 γ \gamma γ 值,

在这里插入图片描述

1、BatchNorm(BN)

Network slimming,就是利用BN层中的缩放因子 γ \gamma γ
整体感觉就是一个归一化操作,但是BN中还额外引入了两个可训练的参数: γ \gamma γ β \beta β

BN的公式:
x ^ ( k ) = γ ⋅ x ( k ) − E [ x ( k ) ] V a r [ x ( k ) ] + β \hat x^{(k)}=\gamma \cdot \frac{x^{(k)}-E[x^{(k)}]}{\sqrt{Var[x^{(k)}]}}+\beta x^(k)=γVar[x(k)] x(k)E[x(k)]+β

  • 如果训练时候输入数据的分布总是改变,网络模型还能学的好吗?
    • 不能,网络刚开始学起来会很差,而且还容易导致过拟合,
  • 对于卷积层来说,它的输入可不是只有原始输入数据
    • 而是卷积层+BN层+relu层输出的数据,如果输入只来自卷积层,那么数据不在同一个分布内,网络刚开始学起来会很差,而且还容易导致过拟合
  • 以sigmoid为例,如果不经过BN层,很多输出值越来也偏离,导致模型收敛越来越难!
    在这里插入图片描述

A、BN的作用

  • BN要做的就是把越来越偏离的分布给他拉回来!
  • 再重新规范化到均值为0方差为1的标准正态分布
  • 这样能够使得激活函数在数值层面更敏感,训练更快
  • 有一种感觉:经过BN后,把数值分布强制分布在了非线性函数的线性区域中,而图像本身是非线性的,所以这是一个缺陷,所以就引入了 γ \gamma γ 参数,

B、BatchNorm参数

  • 如果都是线性的了,神经网络还有意义吗?
  • BN另一方面还需要保证一些非线性,对规范化后的结果再进行变换
  • 这两个参数是训练得到的: y ( k ) = γ x ^ ( k ) + β ( k ) y^{(k)} = \gamma \hat x^{(k)} + \beta ^{(k)} y(k)=γx^(k)+β(k)
  • 感觉就是从正态分布进行一些改变,拉动一下,变一下形状!

图中的1.170,0.001,0.290等就是学习参数 γ \gamma γ 值, γ \gamma γ 值越大则说明该特征层越重要,越小则不重要,

在这里插入图片描述

2、L1与L2正则化

如果学习到的 γ \gamma γ 值是1.17,1.16,1.15等,那如何筛选比较重要的 γ \gamma γ 值呢?使用L1正则化就可以实现筛选比较重要的 γ \gamma γ 值,

  • 论文中提出:训练时使用L1正则化能对参数进行稀疏作用,
  • L1:对权重参数稀疏与特征选择,会对一些权重参数稀疏化接近于0,
  • L2:平滑特征,会对权重参数都接近于0,

L1正则化: J ( θ → ) = 1 2 ∑ i = 1 m ( h θ ~ ( x ( i ) ) − y ( i ) ) 2 + λ ∑ j = 1 n ∣ θ j ∣ J\big(\overrightarrow{\theta}\big)= \frac{1}{2}\sum_{i=1}^m\big(h_{\widetilde{\theta}}(x^{(i)})-y^{(i)}\big)^2+\lambda \sum_{j=1}^n|\theta_j| J(θ )=21i=1m(hθ (x(i))y(i))2+λj=1nθj

L2正则化: J ( θ → ) = 1 2 ∑ i = 1 m ( h θ ~ ( x ( i ) ) − y ( i ) ) 2 + λ ∑ j = 1 n θ j 2 J\big(\overrightarrow{\theta}\big)= \frac{1}{2}\sum_{i=1}^m\big(h_{\widetilde{\theta}}(x^{(i)})-y^{(i)}\big)^2+\lambda \sum_{j=1}^n\theta_j^2 J(θ )=21i=1m(hθ (x(i))y(i))2+λj=1nθj2

其中 h θ ~ ( x ( i ) ) h_{\widetilde{\theta}}(x^{(i)}) hθ (x(i))是预测值, y ( i ) y^{(i)} y(i)是标签值,

2.1 L1与L2的导数及其应用

L1的导数:

L1求导后为:sign( θ \theta θ),相当于稳定前进,都为 ± 1 \pm 1 ±1;所以迭代次数够多,有些特征层权重 θ \theta θ 最后可以学成0了,所以L1可以做稀疏化,

在这里插入图片描述

L2的导数:

L2求导为:θ,梯度下降过程越来越慢,相应的权重参数都接近0,起到平滑的作用,

在这里插入图片描述

2.2 论文核心点

以BN中的 γ \gamma γ 为切入点,即 γ \gamma γ 越小,其对应的特征图越不重要,
为了使得 γ \gamma γ 能有特征选择的作用,引入L1正则来控制 γ \gamma γ

L = ∑ ( x , y ) l ( f ( x , W ) , y ) + λ ∑ γ ∈ Γ g ( γ ) L=\sum_{(x,y)}l\big(f(x,W),y\big)+\lambda\sum_{\gamma \in \Gamma}g(\gamma) L=(x,y)l(f(x,W),y)+λγΓg(γ)

其中 l ( f ( x , W ) , y ) l\big(f(x,W),y\big) l(f(x,W),y)是loss损失函数, γ \gamma γ 是BN中的参数 γ \gamma γ

3、模型剪枝的流程

训练-剪枝-再训练,整体流程如下图所示,

在这里插入图片描述

这篇关于基于BatchNorm的模型剪枝【详解+代码】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/691124

相关文章

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

java中反射(Reflection)机制举例详解

《java中反射(Reflection)机制举例详解》Java中的反射机制是指Java程序在运行期间可以获取到一个对象的全部信息,:本文主要介绍java中反射(Reflection)机制的相关资料... 目录一、什么是反射?二、反射的用途三、获取Class对象四、Class类型的对象使用场景1五、Class

golang 日志log与logrus示例详解

《golang日志log与logrus示例详解》log是Go语言标准库中一个简单的日志库,本文给大家介绍golang日志log与logrus示例详解,感兴趣的朋友一起看看吧... 目录一、Go 标准库 log 详解1. 功能特点2. 常用函数3. 示例代码4. 优势和局限二、第三方库 logrus 详解1.

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.