Elasticsearch 中的索引的分区(Shards)和副本(Replicas)的使用

2024-02-07 17:04

本文主要是介绍Elasticsearch 中的索引的分区(Shards)和副本(Replicas)的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Elasticsearch是一个高性能的、分布式的搜索与数据分析引擎,广泛用于全文搜索、结构化搜索、分析以及这三者的组合场景。在Elasticsearch中,“索引”(Index)是其最基本的数据管理单位,可以类比为传统关系数据库中的“数据库”。为了确保数据的高可用性与高性能访问,Elasticsearch采用了分片(Shards)和副本(Replicas)的概念。

1、分片(Shards)

分片是Elasticsearch进行数据分布和扩展的基础。每个索引都可以被分割成多个分片,每个分片其实是一个独立的索引。分片使得Elasticsearch可以把巨大的数据集分散存储在多个节点上,这样就可以:

水平扩展:随着数据量的增加,可以通过增加更多的节点来分摊数据和负载,从而提高处理能力。

提升性能:搜索操作可以并行在多个分片上执行,由于数据量减少,每个分片处理的速度更快,整体搜索性能得以提升。

2、副本(Replicas)

副本是分片的复制,主要用于提高数据的可用性和搜索查询的并发处理能力。每个分片都可以有一个或多个副本,这些副本分布在不同的节点上,从而提供了:

数据可用性:当某个节点发生故障时,该节点上的分片如果有副本存在于其他节点上,那么这些副本可以保证数据不会丢失,并且服务还可以继续运行。

负载均衡:读取操作(如搜索请求)可以在所有副本之间进行负载均衡,这样可以提高查询的吞吐量和响应速度。

3、具体如何定义分片和副本数量

创建索引时指定分片和副本数

当您通过Elasticsearch的REST API创建一个新的索引时,可以在请求体中使用settings部分来指定该索引的分片数(number_of_shards)和副本数(number_of_replicas)。以下是一个具体的示例:

PUT /my_index
{"settings": {"index": {"number_of_shards": 3,    # 指定该索引将有3个主分片"number_of_replicas": 2   # 每个主分片将有2个副本分片}}
}

这个例子中,PUT /my_index是创建名为my_index的索引的请求。在请求体中,settings部分指出这个索引将被分成3个主分片,并且每个主分片将会有2个副本分片。这意味着,总共会有9个分片(3个主分片 + 6个副本分片)被分布在集群中。

注意事项
主分片数量:一旦索引被创建,其主分片的数量就无法更改。因此,在创建索引时应该谨慎选择合适的分片数量。

副本数量:与主分片数量不同,副本的数量是可以动态调整的。如果您发现需要更多的数据冗余或查询吞吐量,可以增加副本的数量。

伸缩性与性能:选择分片和副本的数量时需要考虑数据量、查询负载和集群的硬件资源。过多的分片可能会增加集群的管理开销,而过少的分片可能会限制数据和查询的伸缩性。

4、动态调整副本数

假设在某个时刻,您想要改变已有索引的副本数以提高数据的冗余度或查询的处理能力,您可以使用以下API调整副本数:

PUT /my_index/_settings
{"index": {"number_of_replicas": 3}
}

这个命令将my_index索引的副本数改为3。这意味着每个主分片现在将有3个副本分片,从而提高了数据的可用性和读取操作的并行度。

5、分片数的确定

数据量预估:估计索引的总数据量大小。一般来说,每个分片处理20GB到50GB数据是比较理想的。这不是固定规则,但可以作为一个起点。
硬件资源:考虑你的硬件资源,尤其是内存和CPU。分片越多,消耗的资源也越多。确保你的Elasticsearch集群有足够的资源来处理这些分片。
写入吞吐量:如果你的应用会有大量的写入操作,更多的分片可能有助于提高写入性能,因为可以并行写入多个分片。
查询性能:更多的分片意味着查询可以并行于更多的分片上执行,这可能会提高查询性能。但是,如果每个查询都要访问大多数分片,那么管理过多的分片会减慢查询速度。

6、副本数的确定

数据可用性:至少有一个副本可以确保当某个节点失败时,数据不会丢失,并且Elasticsearch服务仍然可用。
读取性能:更多的副本意味着更高的读取吞吐量,因为读取请求可以在多个副本之间分配。如果你的应用主要是读取密集型的,增加副本数可以提高查询性能。
集群负载:考虑集群的整体负载。增加副本会提高数据冗余和读取性能,但也会增加存储需求和网络流量,因此需要确保你的硬件资源可以支持。

这篇关于Elasticsearch 中的索引的分区(Shards)和副本(Replicas)的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/688368

相关文章

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud