Spark RDD分析各种类型的最喜爱电影TopN技巧

2024-02-07 15:59

本文主要是介绍Spark RDD分析各种类型的最喜爱电影TopN技巧,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

楔子

学习《spark大数据商业实战》第12章节
通过RDD分析大数据电影点评系统各种类型的电影最喜爱电影TopN。本次分析最受男性(女性)喜爱的电影Top10

里面复用了Spark RDD实现电影流行度分析

思路

  1. 因为要使用电影数据RDD,所以复用了Spark RDD实现电影流行度分析
  2. 根据性别过滤数据
  3. 要进行join 需要key-values
  4. join之后的数据(2828,((3793,3),M)) -->(用户(电影id,评分)性别) 转换为Spark RDD实现电影流行度分析需要的格式 (电影,评分,人数) --eg (MovieID,(Rating,1))

demo lambda方式

/*** 2:最受男性欢迎的电影 和最受女性欢迎的电影(RDD方式)使用lambda简化* * @param userDF* @param ratDF*/
public static void popularByRDDSimpleness(SparkSession sparkSession, JavaRDD<String> userRdd, JavaRDD<String> ratRdd) {System.out.println("男性喜爱的10个电影 ByRDD");System.out.println(new DateTime().toString("yyyy-MMM-dd HH:mm:ss:SSS"));// UserID::GenderJavaPairRDD<String, String> user_gender = userRdd.mapToPair(t -> new Tuple2<String, String>(t.split("::")[0], t.split("::")[1]));user_gender.cache();// 评分变为 userid:(电影id,评分)JavaPairRDD<String, Tuple2<String, Long>> user_movie_rat = ratRdd.mapToPair(t -> new Tuple2<String, Tuple2<String, Long>>(t.split("::")[0], new Tuple2<String, Long>(t.split("::")[1], Long.valueOf(t.split("::")[2]))));user_movie_rat.cache();JavaPairRDD<String, Tuple2<Tuple2<String, Long>, String>> user_pairRdd = user_movie_rat.join(user_gender);// user_pairRdd.take(10).forEach(t -> System.out.println(t));// (2828,((3793,3),M))// (2828,((2997,5),M))// 从里面过滤男性JavaPairRDD<String, Tuple2<Tuple2<String, Long>, String>> filter = user_pairRdd.filter(t -> t._2._2.equals("M"));// 将上述过滤之后的结果 (userid,(电影id,评分),性别) 从新构造成 (MovieID,(Rating,1))JavaPairRDD<String, Tuple2<Long, Long>> mapToPair = filter.mapToPair(t -> new Tuple2<String, Tuple2<Long, Long>>(t._2._1._1, new Tuple2<Long, Long>(t._2._1._2, 1L)));/*** 1 所有电影中平均得分最高的Top10电影*/// step 1 把数据变为key-value ,eg (MovieID,(Rating,1))mapToPair.cache();// step 2 通过reduceByKey 汇总,key是MovieID,但是values是(评分总和,点评人数合计)JavaPairRDD<String, Tuple2<Long, Long>> reduceByKey = mapToPair.reduceByKey((a, b) -> new Tuple2<Long, Long>(a._1 + b._1, a._2 + b._2));// step 3 sortByKey(false) 倒序排列JavaPairRDD<Double, String> result = reduceByKey.mapToPair(v1 -> new Tuple2<Double, String>((v1._2._1 * 0.1 / v1._2._2), v1._1));result.sortByKey(false).take(10).forEach(t -> System.out.println(t));System.out.println(new DateTime().toString("yyyy-MMM-dd HH:mm:ss:SSS"));
}

demo SparkSQL方式

/*** 2:最受男性欢迎的电影 和最受女性欢迎的电影(Sql方式)* * @param userDF* @param ratDF*/
public static void popularBySql(SparkSession sparkSession, Dataset<Row> userDF, Dataset<Row> ratDF) {System.out.println("男性喜爱的10个电影 BySQL");System.out.println(new DateTime().toString("yyyy-MMM-dd HH:mm:ss:SSS"));// 2019-一月-03 20:10:05:305userDF.createOrReplaceTempView("t_user");ratDF.createOrReplaceTempView("t_rat");// 选择评论中是男性的评分Dataset<Row> sql = sparkSession.sql("select avg(rat) rat_avg ,MovieID from (" //+ "select r.* from t_rat r , t_user u where u.Gender='M' AND U.UserID = r.UserID )" + //"group by MovieID order by rat_avg desc limit 10");sql.show();System.out.println(new DateTime().toString("yyyy-MMM-dd HH:mm:ss:SSS"));
}

spark RDD方式

GitHub位置 方法是popularByRDD 代码太长 此处不罗列

对比RDD和SparkSQL

对比不是那么充分,仅作为一个参考。由下图发现 RDD方式 所需要的时间会短一点
在这里插入图片描述

这篇关于Spark RDD分析各种类型的最喜爱电影TopN技巧的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/688222

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Pandas中多重索引技巧的实现

《Pandas中多重索引技巧的实现》Pandas中的多重索引功能强大,适用于处理多维数据,本文就来介绍一下多重索引技巧,具有一定的参考价值,感兴趣的可以了解一下... 目录1.多重索引概述2.多重索引的基本操作2.1 选择和切片多重索引2.2 交换层级与重设索引3.多重索引的高级操作3.1 多重索引的分组聚

Redis多种内存淘汰策略及配置技巧分享

《Redis多种内存淘汰策略及配置技巧分享》本文介绍了Redis内存满时的淘汰机制,包括内存淘汰机制的概念,Redis提供的8种淘汰策略(如noeviction、volatile-lru等)及其适用场... 目录前言一、什么是 Redis 的内存淘汰机制?二、Redis 内存淘汰策略1. pythonnoe

怎么关闭Ubuntu无人值守升级? Ubuntu禁止自动更新的技巧

《怎么关闭Ubuntu无人值守升级?Ubuntu禁止自动更新的技巧》UbuntuLinux系统禁止自动更新的时候,提示“无人值守升级在关机期间,请不要关闭计算机进程”,该怎么解决这个问题?详细请看... 本教程教你如何处理无人值守的升级,即 Ubuntu linux 的自动系统更新。来源:https://

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re