本文主要是介绍MST:《Real-Time Tracking of Non-Rigid Objects using Mean Shift》 mean shift,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
前言
无参密度估计理论,无参密度估计也叫做非参数估计,属于数理统计的一个分支,和参数密度估计共同构成了概率密度估计方法。参数密度估计方法要求特征空间服从一个已知的概率密度函数,在实际的应用中这个条件很难达到。而无参数密度估计方法对先验知识要求最少,完全依靠训练数据进行估计,并且可以用于任意形状的密度估计。所以依靠无参密度估计方法,即不事先规定概率密度函数的结构形式,在某一连续点处的密度函数值可由该点邻域中的若干样本点估计得出。常用的无参密度估计方法有:直方图法、最近邻域法和核密度估计法。
MeanShift算法正是属于核密度估计法,它不需要任何先验知识而完全依靠特征空间中样本点的计算其密度函数值。对于一组采样数据,直方图法通常把数据的值域分成若干相等的区间,数据按区间分成若干组,每组数据的个数与总参数个数的比率就是每个单元的概率值;核密度估计法的原理相似于直方图法,只是多了一个用于平滑数据的核函数。采用核函数估计法,在采样充分的情况下,能够渐进地收敛于任意的密度函数,即可以对服从任何分布的数据进行密度估计。
1.mean shift vector-均值移动向量
Mean Shift向量:偏移的均值向量。定义如下:对于给定d维空间Rd中的n个样本点xi,i=1,2,…,n在xd点的Mean Shift向量的基本形式定义为:
其中,Sh是一个半径为h的高维球区域:,k表示在这n个样本点中有k个落入球Sh中。
直观上来看,这k个样本点在x处的偏移向量即为:对落入Sh区域中的k个样本点相对于点x的偏移向量求和然后取平均值;
几何解释为:如果样本点xi服从一个概率密度函数为f(x)的分布,由于非零的概率密度函数的梯度指向概率密度增加最大的方向,因此从平均上来说,Sh区域内的样本点更多的落在沿着概率密度梯度的方向。因此,Mean Shift向量Mh(x)应该指向概率密度梯度的方向。如图(图片来源)所示:
这篇关于MST:《Real-Time Tracking of Non-Rigid Objects using Mean Shift》 mean shift的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!