机器学习入门(3)——多变量线性回归(Linear Regression with Multiple Variables)

本文主要是介绍机器学习入门(3)——多变量线性回归(Linear Regression with Multiple Variables),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 多维特征(Multiple Features)
  • 多变量梯度下降(Gradient Descent for Multiple Variables)
  • 梯度下降法实践1-特征缩放(Feature Scaling)
  • 梯度下降法实践2-学习率(Learning Rate)
  • 特征和多项式回归(Features and Polynomial Regression)
  • 正规方程(Normal Equation)

多维特征(Multiple Features)

在这里插入图片描述

多变量梯度下降(Gradient Descent for Multiple Variables)

与单变量线性回归类似,在多变量线性回归中,我们也构建一个代价函数,则这个代价函数是所有建模误差的平方和,即:
J ( θ 0 , θ 1 … θ n ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J\left(\theta_{0}, \theta_{1} \ldots \theta_{n}\right)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2} J(θ0,θ1θn)=2m1i=1m(hθ(x(i))y(i))2
其中: h θ ( x ) = θ T X = θ 0 + θ 1 x 1 + θ 2 x 2 + … + θ n x n h_{\theta}(x)=\theta^{T} X=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\ldots+\theta_{n} x_{n} hθ(x)=θTX=θ0+θ1x1+θ2x2++θnxn
我们的目标和单变量线性回归问题中一样,是要找出使得代价函数最小的一系列参数。
在这里插入图片描述

我们开始随机选择一系列的参数值,计算所有的预测结果后,再给所有的参数一个新的值,如此循环直到收敛。
代码示例:
计算代价函数
J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J(\theta)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2} J(θ)=2m1i=1m(hθ(x(i))y(i))2
其中: h θ ( x ) = θ T X = θ 0 x 0 + θ 1 x 1 + θ 2 x 2 + … + θ n x n h_{\theta}(x)=\theta^{T} X=\theta_{0} x_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\ldots+\theta_{n} x_{n} hθ(x)=θTX=θ0x0+θ1x1+θ2x2++θnxn
Python 代码:

def computeCost(X, y, theta):inner = np.power(((X * theta.T) - y), 2)return np.sum(inner) / (2 * len(X))

梯度下降法实践1-特征缩放(Feature Scaling)

特征缩放:面对多维特征问题的时候,我们要保证这些特征都具有相近的尺度,这将帮助梯度下降算法更快地收敛,收敛所需的迭代次数更少。
在这里插入图片描述

梯度下降法实践2-学习率(Learning Rate)

梯度下降算法收敛所需要的迭代次数根据模型的不同而不同,我们不能提前预知,我们可以绘制迭代次数和代价函数的图表来观测算法在何时趋于收敛。

梯度下降算法的每次迭代受到学习率的影响,如果学习率α过小,则达到收敛所需的迭代次数会非常高;如果学习率α过大,每次迭代可能不会减小代价函数,可能会越过局部最小值导致无法收敛。
通常可以考虑尝试以下学习率:
α = 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10

特征和多项式回归(Features and Polynomial Regression)

在这里插入图片描述

正规方程(Normal Equation)

在这里插入图片描述
用正规方程方法求解参数:
在这里插入图片描述
注:对于那些不可逆的矩阵(通常是因为特征之间不独立,如同时包含英尺为单位的尺寸和米为单位的尺寸两个特征,也有可能是特征数量大于训练集的数量),正规方程方法是不能用的。
梯度下降与正规方程的比较:
在这里插入图片描述
正规方程的python实现:

import numpy as npdef normalEqn(X, y):theta = np.linalg.inv(X.T@X)@X.T@y #X.T@X等价于X.T.dot(X)return theta

这篇关于机器学习入门(3)——多变量线性回归(Linear Regression with Multiple Variables)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/687731

相关文章

java如何调用kettle设置变量和参数

《java如何调用kettle设置变量和参数》文章简要介绍了如何在Java中调用Kettle,并重点讨论了变量和参数的区别,以及在Java代码中如何正确设置和使用这些变量,避免覆盖Kettle中已设置... 目录Java调用kettle设置变量和参数java代码中变量会覆盖kettle里面设置的变量总结ja

Perl 特殊变量详解

《Perl特殊变量详解》Perl语言中包含了许多特殊变量,这些变量在Perl程序的执行过程中扮演着重要的角色,:本文主要介绍Perl特殊变量,需要的朋友可以参考下... perl 特殊变量Perl 语言中包含了许多特殊变量,这些变量在 Perl 程序的执行过程中扮演着重要的角色。特殊变量通常用于存储程序的

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

变量与命名

引言         在前两个课时中,我们已经了解了 Python 程序的基本结构,学习了如何正确地使用缩进来组织代码,并且知道了注释的重要性。现在我们将进一步深入到 Python 编程的核心——变量与命名。变量是我们存储数据的主要方式,而合理的命名则有助于提高代码的可读性和可维护性。 变量的概念与使用         在 Python 中,变量是一种用来存储数据值的标识符。创建变量很简单,

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss