代码+视频一步到位:手把手教你R语言竞争风险模型建模-列线图-校准曲线-K折验证-外部验证- 决策曲线

本文主要是介绍代码+视频一步到位:手把手教你R语言竞争风险模型建模-列线图-校准曲线-K折验证-外部验证- 决策曲线,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

竞争风险模型就是指在临床事件中出现和它竞争的结局事件,这是事件会导致原有结局的改变,因此叫做竞争风险模型。比如我们想观察患者肿瘤的复发情况,但是患者在观察期突然车祸死亡,或者因其他疾病死亡,这样我们就观察不到复发情况了,这种情况下不能把缺失数据仅仅当做右删失处理,这样的话会造成数据的估值错误。这是我们应该优先选择竞争风险模型来做数据分析,而不是COX回归。我们在既往文章《手把手教你使用R语言做竞争风险模型并绘制列线图》中已经介绍了cmprsk包建立竞争风险模型和绘制列线图,但是cmprsk包功能还是相对简单一点,而且制作列线图的时候还需要对数据进行加权,对新手不怎么友好,许多人做不出来。

在这里插入图片描述
今天我们来介绍一下QHScrnomo包,QHScrnomo是在cmprsk包的基础上将功能呢继续完善,简化流程,可以做出竞争风险模型建模-列线图-校准曲线-K折验证-外部验证-决策曲线等诸多功能,总有一款适合你。
好了,废话不多说,立即开始

为竞争风险模型构建列线图

代码

library(QHScrnomo)
#公众号回复:前列腺癌,可以获得这个数据
bc<-read.csv("E:/r/test/qianliexian.csv",sep=',',header=TRUE)
######数据按7:3比例划分
set.seed(123)
tr1<- sample(nrow(bc),0.7*nrow(bc))##随机无放抽取
bc_train <- bc[tr1,]#70%数据集
bc_test<- bc[-tr1,]#30%数据集
#######整理数据
dd <- datadist(bc_train)
options(datadist = "dd")
######建立模型
prostate.f <- cph(Surv(TIME_EVENT,EVENT_DOD == 1) ~ TX + rcs(PSA,3) +BX_GLSN_CAT + CLIN_STG + rcs(AGE,3) +RACE_AA, data = bc_train,x = TRUE, y= TRUE, surv=TRUE,time.inc = 144)prostate.crr <- crr.fit(prostate.f,cencode = 0,failcode = 1)
#解析模型
summary(prostate.crr)
#对部分指标重命名,这样新的名字就会在列线图出现
prostate.g <- Newlabels(prostate.crr,c(TX = 'Treatment options', BX_GLSN_CAT = 'Biopsy Gleason Score Sum',CLIN_STG = 'Clinical stage'))
###建立列线图并绘图
nomogram.crr(prostate.g,failtime = 120,lp=FALSE,xfrac=0.65,fun.at = seq(0.2, 0.45, 0.05),funlabel = "Predicted 10-year cumulative incidence")nomogram.crr(prostate.crr,failtime = 120,lp=FALSE,xfrac=0.65,fun.at = seq(0.2, 0.45, 0.05),funlabel = "Predicted 10-year cumulative incidence")##计算公式
sas.cmprsk(prostate.crr, time = 120)###10折交叉验证
bc_train$preds.tenf <- tenf.crr(prostate.crr, time=120, fold = 10)##C指数 cindex
with(bc_train, cindex(preds.tenf,ftime = TIME_EVENT,fstatus =EVENT_DOD, type = "crr"))["cindex"]##Cindex计算好以后我们继续绘制校准曲线
with(bc_train,groupci(preds.tenf, ftime = TIME_EVENT,fstatus =EVENT_DOD, g = 5, u = 120,xlab = "Nomogram predicted 10-year cancerspecific mortality",ylab = "Observed predicted 10-year cancerspecific mortality")
)with(bc_train,groupci(preds.tenf, ftime = TIME_EVENT,fstatus =EVENT_DOD, g = 10, u = 120,xlab = "Nomogram predicted 10-year cancerspecific mortality",ylab = "Observed predicted 10-year cancerspecific mortality")
)  

这篇关于代码+视频一步到位:手把手教你R语言竞争风险模型建模-列线图-校准曲线-K折验证-外部验证- 决策曲线的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/684157

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验