本文主要是介绍【定位问题】TDOA+taylor算法移动基站无源定位【含Matlab源码 2098期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
⛄一、chan+taylor算法移动基站无源定位简介
1 引言
随着无人机的普及,低空空域的安全问题受到人们的极大关注.针对该问题,本研究对“非合作型”无人机采用一种基于时差法的无源定位算法对其进行实时定位.基于时差法的无源定位方法是根据求解无人机信号到达主站和各辅站的距离差,并联合各基站坐标所构成的双曲线方程组来实现.该方法定位精度高,且不对外发射信号,可在机场等区域安全使用.
目前,Chan算法和Taylor算法是2种经典的时差定位算法.其中,Chan算法在时差值精确的情况下,可以实现较高精度的定位,但如果时差值精度不够,其定位精度会大幅降低.Taylor算法则是在已有的定位坐标基础上,进行迭代递归,使定位出的坐标接近于目标的真实坐标.虽然Taylor算法定位精度较高,但需要提供初始估计坐标,否则就无法实现准确定位.基于2种算法的特点,本研究提出Chan-Taylor联合算法,其思路是,将Chan算法解算出的目标坐标作为初始估计坐标值赋给Taylor算法进行迭代运算,即使获取的时差值存在一定误差,使初始估计坐标的精度不高,但可以通过迭代来提高定位坐标的精度.通过算法对比和仿真分析表明,Chan-Taylor联合算法较Chan算法具有更高的定位精度和稳定性,较Taylor算法更具有实用性.
2 算法描述
这篇关于【定位问题】TDOA+taylor算法移动基站无源定位【含Matlab源码 2098期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!