python爬取前程无忧招聘用Hive做数据分析Sqoop存储到Mysql并可视化

本文主要是介绍python爬取前程无忧招聘用Hive做数据分析Sqoop存储到Mysql并可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、导出数据

导出为zh_all2.txt文件
在这里插入图片描述
在这里插入图片描述

二、上传数据

在这里插入图片描述
在这里插入图片描述

三、使用Flume传入HDFS

(1)编写conf文件
在flume的conf目录下新建文件
在这里插入图片描述

a1.sources=r1
a1.channels=c1
a1.sinks=s1a1.sources.r1.type=exec
a1.sources.r1.command=tail -F /opt/module/flume-1.9.0/conf/data/zh_all2.txt
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444a1.sinks.s1.type=HDFSa1.sinks.s1.type=hdfs://hadoop129:90000/user/flume/qcwy_txt
a1.sinks.s1.hdfs.rollCount=0
a1.sinks.s1.hdfs.fileType=Datastream# 配置a1的channel组件c1的属性
a1.channels.c1.type=memory
a1.channels.c1.capacity=1000
a1.channels.c1.transactionCapacity=100
# 为source和sink组件绑定channel
a1.sources.r1.channels=c1
a1.sinks.k1.channel=c1

文件传入成功
在这里插入图片描述

四、数据分析

1、利用hive进行分析,2、将hive分析结果利用sqoop技术存储到mysql数据库中,并最后显示分析结果

1、启动Hive导入zh_all2.txt数据

在这里插入图片描述

2、查看table表qcwy2

在这里插入图片描述

3、岗位薪资分析

分析“数据分析”、“大数据开发工程师”、“数据采集”等岗位的平均工资、最高工资、最低工资,并作条形图将结果展示出来

A. 数据分析岗位
(1)模糊匹配提取
以模糊匹配提取出数据分析岗位的记录,存入表f_x_1(只存Jobtitle和wages字段)
在这里插入图片描述
(2)切分薪资字段存储

create table f_x_2 as select Jobtitle, regexp_extract(wages,'([0-9]+)-',1) as a_min, regexp_extract(wages,'-([0-9]+)',1) as a_max, (regexp_extract(wages,'([0-9]+)-',1) + regexp_extract(wages,'-([0-9]+)',1))/2 as a_avg from f_x_1;

数据分析
在这里插入图片描述

数据采集
在这里插入图片描述
在这里插入图片描述
大数据
在这里插入图片描述
在这里插入图片描述
(3)计算最大 、最小、平均

create table f_x_3 as select "数据分析" as Jobtitle, min(int(a_min)*0.1) as s_min, max(int(a_max)*0.1) as s_max, regexp_extract(avg(a_avg),'([0-9]+.[0-9]?[0-9]?)',1)*0.1 as s_avg from f_x_2;

在这里插入图片描述
在这里插入图片描述
汇总
(4)、下面查询大数据、数据采集方法类似、然后汇总为一张总表

在这里插入图片描述

四、使用sqoop存到mysql

(1)在mysql创建数据库数据表
进入数据库:mysql -u root -p
在这里插入图片描述
创建qcwy_db数据库
在这里插入图片描述
使用qcwy_db数据库创建表

(1)创建表:create table tab1(t_name varchar(20), t_min int, t_max int, t_avg varchar(10)) charset utf8 collate utf8_general_ci;
在这里插入图片描述
(2)导入数据

bin/sqoop export --connect jdbc:mysql://hadoop129:3306/qcwy_db  --username root --password 1 --table tab1 --export-dir /user/hive/warehouse/qcwy_db.db/tab1 --input-null-string "\\\\N" --input-null-non-string "\\\\N" --input-fields-terminated-by "\001" --input-lines-terminated-by "\\n" -m 1 

在这里插入图片描述
查询导入的数据
在这里插入图片描述
查询城市岗位数
在这里插入图片描述

可视化分析

创建远程访问mysql数据库用户

 GRANT ALL PRIVILEGES ON *.* TO 'admin'@'%' IDENTIFIED BY '1' WITH GRANT OPTION; 

在这里插入图片描述

1、岗位薪资分析

在这里插入图片描述

import pymysql
from pyecharts.charts import Bar
from pyecharts import options as opts
class MysqlTool:def __init__(self,host,user,password,database,port = 3306,charset = 'utf8'):self.host = hostself.user = userself.password = passwordself.database = databaseself.port = portself.charset = charsetdef connect(self):#连接数据库self.conn = pymysql.connect(host = self.host,user = self.user,password = self.password,database = self.database,port = self.port,charset = self.charset)self.cursor = self.conn.cursor() #cursor获取游标#增删改#sql:要执行的sql语句#args:带参sql的值#返回受影响的行数def __cud(self,sql,args = None):#私有row_count = 0try:self.connect()row_count = self.cursor.execute(sql,args)#execute执行self.conn.commit()#commit提交self.close()except Exception as e:print(e)return row_count#插入def insert(self,sql,args):return self.__cud(sql,args)#修改def updata(self,sql,args):return self.__cud(sql,args)#删除def delete(self,sql,args):return self.__cud(sql,args)#查询一条信息def get_one(self,sql,args=None):try:self.connect()self.cursor.execute(sql,args)result=self.cursor.fetchone()self.close()return resultexcept Exception as e:print(e)#查询多条信息def get_all(self,sql,args=None):try:self.connect()self.cursor.execute(sql,args)#  连接,获取光标,执行# result=self.cursor.execute()result=self.cursor.fetchall()#返回结果self.close()return resultexcept Exception as e:print(e)#关闭连接def close(self):self.cursor.close()self.conn.close()mt = MysqlTool('192.168.10.129', 'root', '1', 'hive')
def show_text():sql = "select * from work_1"result = mt.get_all(sql)
#得到职位名称
def show_name(list):vv = []for v in list:name = ''a = re.findall('[\u4e00-\u9fa5]', str(v))for i in a:name += ivv.append(name)#print(vv)return vv
#
def show_bar_chart1(data1,cc):ll = data1# 创建3个空数组average_Pay_level = []max_Pay_level = []min_Pay_level = []#循环向数组添加数据for i in ll:data = pd.DataFrame(list(db.find(i)))bb = data['wages'].valuesmax_Pay_level.append(Pay_level_list(bb)[0])average_Pay_level.append(Pay_level_list(bb)[1])min_Pay_level.append(Pay_level_list(bb)[2])show(max_Pay_level, average_Pay_level, min_Pay_level, cc)
#data为工资列表
#统一格式后,输出最大,平均,最小
def Pay_level_list(data):ww = [".*?千/月", ".*?万/月", ".*?万/年", ".*?元/天"]Pay_level_list = []for i in data:if isinstance(i, str):for j, v in enumerate(ww):if re.search(v, i) is not None:if j == 0:num = [round(i, 2) for i in([(i * 12 / 10) for i in (list(map(float, re.findall(r"\d+\.?\d*", i))))])]elif j == 1:num = [round(i, 2) for i in([(i * 12) for i in (list(map(float, re.findall(r"\d+\.?\d*", i))))])]elif j == 2:num = [round(i, 2) for i in (list(map(float, re.findall(r"\d+\.?\d*", i))))]elif j == 3:num = [round(i, 2) for i in([(i * 365 / 10000) for i in (list(map(float, re.findall(r"\d+\.?\d*", i))))])]Pay_level_list.append(num_al(num))return max(Pay_level_list), tall_num(Pay_level_list), min(Pay_level_list)
#求平均值
def tall_num(list):num = 0for i in list:num += ireturn round(num/(len(list)+1), 2)
def num_al(list):if len(list) >= 2:num = (list[0] + list[1]) / 2else:num = list[0]return round(num, 2)
#输出条形图
def show(a, b, c, d):name=d  #d = x轴标题(abcd个数要对应)y1 = a  # a = 最高工资列表y2 = b  #b = 平均工资列表y3 = c  #c = 最低工资x = pd.np.arange(len(name))width = 0.25plt.bar(x, y1, width=width, label='最高工资', color='red')plt.bar(x + width, y2, width=width, label='平均工资', color='deepskyblue', tick_label=name)plt.bar(x + 2 * width, y3, width=width, label='最低工资', color='green')# 显示在图形上的值for a, b in zip(x, y1):plt.text(a, b + 0.1, b, ha='center', va='bottom')for a, b in zip(x, y2):plt.text(a + width, b + 0.1, b, ha='center', va='bottom')for a, b in zip(x, y3):plt.text(a + 2 * width, b + 0.1, b, ha='center', va='bottom')plt.xticks()plt.legend(loc="upper left")  # 防止label和图像重合显示不出来plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签plt.ylabel('月/K')plt.xlabel('岗位名称')plt.rcParams['savefig.dpi'] = 300  # 图片像素plt.rcParams['figure.dpi'] = 300  # 分辨率plt.rcParams['figure.figsize'] = (15.0, 8.0)  # 尺寸plt.title("工资分析")plt.savefig('D:\\result.png')plt.show()

2、岗位数量分析

在这里插入图片描述

import pymysql
from pyecharts.charts import Bar
from pyecharts import options as opts
class MysqlTool:def __init__(self,host,user,password,database,port = 3306,charset = 'utf8'):self.host = hostself.user = userself.password = passwordself.database = databaseself.port = portself.charset = charsetdef connect(self):#连接数据库self.conn = pymysql.connect(host = self.host,user = self.user,password = self.password,database = self.database,port = self.port,charset = self.charset)self.cursor = self.conn.cursor() #cursor获取游标#增删改#sql:要执行的sql语句#args:带参sql的值#返回受影响的行数def __cud(self,sql,args = None):#私有row_count = 0try:self.connect()row_count = self.cursor.execute(sql,args)#execute执行self.conn.commit()#commit提交self.close()except Exception as e:print(e)return row_count#插入def insert(self,sql,args):return self.__cud(sql,args)#修改def updata(self,sql,args):return self.__cud(sql,args)#删除def delete(self,sql,args):return self.__cud(sql,args)#查询一条信息def get_one(self,sql,args=None):try:self.connect()self.cursor.execute(sql,args)result=self.cursor.fetchone()self.close()return resultexcept Exception as e:print(e)#查询多条信息def get_all(self,sql,args=None):try:self.connect()self.cursor.execute(sql,args)#  连接,获取光标,执行# result=self.cursor.execute()result=self.cursor.fetchall()#返回结果self.close()return resultexcept Exception as e:print(e)#关闭连接def close(self):self.cursor.close()self.conn.close()mt = MysqlTool('192.168.10.129', 'root', '1', 'hive')
def show_text():sql = "select * from work_1"result = mt.get_all(sql)
#得到职位名称
def show_name(list):vv = []for v in list:name = ''a = re.findall('[\u4e00-\u9fa5]', str(v))for i in a:name += ivv.append(name)return vv#饼图实现
def pie_chart(list1):city = list1city1 = []city2 = []for i in city:city1.append(i["recruiters"])#拿到公司名mm = show_name(city1)for j, v in enumerate(city):bb = len(pd.DataFrame(list(db.find(v))))city2.append(bb)mm[j] += str(bb)plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签sizes = city2# explode = (0.1, 0, 0, 0, 0)plt.pie(sizes, labels=mm, autopct='%1.1f%%', shadow=False, startangle=150)  # 想要突出plt.title("饼图示例-岗位数")plt.show()

三、岗位经验分析

在这里插入图片描述

import pymysql
from pyecharts.charts import Bar
from pyecharts import options as opts
class MysqlTool:def __init__(self,host,user,password,database,port = 3306,charset = 'utf8'):self.host = hostself.user = userself.password = passwordself.database = databaseself.port = portself.charset = charsetdef connect(self):#连接数据库self.conn = pymysql.connect(host = self.host,user = self.user,password = self.password,database = self.database,port = self.port,charset = self.charset)self.cursor = self.conn.cursor() #cursor获取游标#增删改#sql:要执行的sql语句#args:带参sql的值#返回受影响的行数def __cud(self,sql,args = None):#私有row_count = 0try:self.connect()row_count = self.cursor.execute(sql,args)#execute执行self.conn.commit()#commit提交self.close()except Exception as e:print(e)return row_count#插入def insert(self,sql,args):return self.__cud(sql,args)#修改def updata(self,sql,args):return self.__cud(sql,args)#删除def delete(self,sql,args):return self.__cud(sql,args)#查询一条信息def get_one(self,sql,args=None):try:self.connect()self.cursor.execute(sql,args)result=self.cursor.fetchone()self.close()return resultexcept Exception as e:print(e)#查询多条信息def get_all(self,sql,args=None):try:self.connect()self.cursor.execute(sql,args)#  连接,获取光标,执行# result=self.cursor.execute()result=self.cursor.fetchall()#返回结果self.close()return resultexcept Exception as e:print(e)#关闭连接def close(self):self.cursor.close()self.conn.close()mt = MysqlTool('192.168.10.129', 'root', '1', 'hive')
def show_text():sql = "select * from work_1"result = mt.get_all(sql)
#data为工资列表
# 统一格式后,输出最大,平均,最小
def Pay_level_list(data):ww = [".*?千/月", ".*?万/月", ".*?万/年", ".*?元/天"]Pay_level_list = []for i in data:if isinstance(i, str):for j, v in enumerate(ww):if re.search(v, i) is not None:if j == 0:num = [round(i, 2) for i in([(i * 12 / 10) for i in (list(map(float, re.findall(r"\d+\.?\d*", i))))])]elif j == 1:num = [round(i, 2) for i in([(i * 12) for i in (list(map(float, re.findall(r"\d+\.?\d*", i))))])]elif j == 2:num = [round(i, 2) for i in (list(map(float, re.findall(r"\d+\.?\d*", i))))]elif j == 3:num = [round(i, 2) for i in([(i * 365 / 10000) for i in (list(map(float, re.findall(r"\d+\.?\d*", i))))])]Pay_level_list.append(num_al(num))return max(Pay_level_list), tall_num(Pay_level_list), min(Pay_level_list)
#求平均数
def tall_num(list):num = 0for i in list:num += ireturn round(num/(len(list)+1), 2)
def num_al(list):if len(list) >= 2:num = (list[0] + list[1]) / 2else:num = list[0]return round(num, 2)
#
def show_bar_chart1(xx,cc):#拿到工资数据ll = xx#创建3个空数组average_Pay_level = []max_Pay_level = []min_Pay_level = []#循环向数组添加数据for i in ll:data = pd.DataFrame(list(db.find(i)))bb = data['wages'].valuesmax_Pay_level.append(Pay_level_list(bb)[0])average_Pay_level.append(Pay_level_list(bb)[1])min_Pay_level.append(Pay_level_list(bb)[2])show(max_Pay_level, average_Pay_level, min_Pay_level, cc)def show(a, b, c, d):name=d  #d = x轴标题(abcd个数要对应)y1 = a  # a = 最高工资列表y2 = b  #b = 平均工资列表y3 = c  #c = 最低工资x = pd.np.arange(len(name))width = 0.25plt.bar(x, y1, width=width, label='最高工资', color='red')plt.bar(x + width, y2, width=width, label='平均工资', color='green', tick_label=name)plt.bar(x + 2 * width, y3, width=width, label='最低工资', color='pink')# 显示在图形上的值for a, b in zip(x, y1):plt.text(a, b + 0.1, b, ha='center', va='bottom')for a, b in zip(x, y2):plt.text(a + width, b + 0.1, b, ha='center', va='bottom')for a, b in zip(x, y3):plt.text(a + 2 * width, b + 0.1, b, ha='center', va='bottom')plt.xticks()plt.legend(loc="upper left")  # 防止label和图像重合显示不出来plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签plt.ylabel('月/K')plt.xlabel('经验年限')plt.rcParams['savefig.dpi'] = 300  # 图片像素plt.rcParams['figure.dpi'] = 300  # 分辨率plt.rcParams['figure.figsize'] = (15.0, 8.0)  # 尺寸plt.title("工作年限工资图")plt.savefig('D:\\result.png')plt.show()

这篇关于python爬取前程无忧招聘用Hive做数据分析Sqoop存储到Mysql并可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/680397

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优