基于动态阈值算法的黎明和黄昏时间海雾检测

2024-02-05 07:20

本文主要是介绍基于动态阈值算法的黎明和黄昏时间海雾检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

黎明和黄昏海雾检测

  • 一、概述
    • 1.存在的问题
    • 2.提出的方法
    • 3.数据集
    • 4.对比的算法
  • 二、详细步骤
    • 1.研究区域
    • 2.动态阈值算法
      • (1)光谱特征与太阳天顶角变化关系
      • (2)算法构造
      • (3)算法流程
    • 3.实验
  • 三、总结

参考文章:SEA FOG DETECTION BASED ON DYNAMIC THRESHOLD ALGORITHM AT DAWN AND DUSK TIM

一、概述

1.存在的问题

在黎明和黄昏时间时海雾的高发期,其对全天的海雾检测有重要的意义。
但是由于大多数的极地轨道卫星会受到时间分辨率和过境时间的影响,不能针对某一区域进行黎明和黄昏的海雾检测。

2.提出的方法

通过运用葵花8号卫星数据,分析海雾在黎明和黄昏的亮温和反射率变化,选择敏感波段,设定海雾的检测指标和动态阈值。

提出动态阈值法,有效检测黎明和黄昏海雾。

3.数据集

葵花8号卫星数据,研究的区域黄海,渤海地区。

4.对比的算法

二、详细步骤

1.研究区域

黄海渤海地区:
在这里插入图片描述

2.动态阈值算法

(1)光谱特征与太阳天顶角变化关系

在海雾检测中,夜晚和白天的海雾比较稳定,其光谱特征变化不大,所以在阈值选择上可以选择固定的阈值。但对于黎明和黄昏,其光谱特征变化很大,尤其是可见光和近红外波段的反射率,因此固定的阈值无法实现黎明和黄昏海雾的检测。

因为海雾的光谱特征变化与太阳天顶角有关,所以构建一种基于太阳天顶角的动态阈值方法,太阳天顶角在黎明和黄昏的范围设定为 [ 81 ° , 90 ° ) [81°,90°) [81°90°)

根选取10张黎明和黄昏的海雾图,得出可见波段海雾反射率太阳天顶角的关系。
从图中可以看出,随着太阳天顶角的增大,近红外波段反射率逐步减小到0
在这里插入图片描述
在远红外波段。只有第七波段与太阳天顶角成线性关系,其他波段没有关系。

波段7
在这里插入图片描述
波段14
在这里插入图片描述

(2)算法构造

根据上面所讲的不同波段的亮温随着反射率变化的线性关系。

我们可以得出以下公式,这就是根据训练数据获得的各波段与雾的关系公式。所以对输入的图像处理,符合这些公式的就是雾,不符合的就是其他。

在这里插入图片描述
接下来我会一个公式一个公式的解释:

第一个公式:
B 7 B_7 B7也就是波段7,可以看到波段7是随着太阳天顶角变化而线性变化的所以阈值的选择,需要符合这个公式(这个-3的取值为了让公式下移一部分,来保证在线上下两侧的数值符合这个公式。),也就是输入进来的图片的 B 7 B_7 B7必须要大于这个公式的值。

画线工具不太好
在这里插入图片描述

第二个公式
计算 B 1 B_1 B1 B 4 B_4 B4的和,这个的目的同样也是用来判断输出图片的 B 1 B_1 B1 B 4 B_4 B4波段,如果输出图片的 B 1 B_1 B1 B 4 B_4 B4加起来小于这个公式的值,说明不是雾。

第三个公式
计算 B 1 B_1 B1 B 4 B_4 B4的亮温差,当输入的照片 B 1 B_1 B1 B 4 B_4 B4的差在公式的范围内的话,说明是雾。
在这里插入图片描述
第四个公式
同理计算 B 3 B_3 B3 B 5 B_5 B5的亮温差,当输入的照片 B 3 B_3 B3 B 5 B_5 B5的差在公式的范围内的话,说明是雾。
在这里插入图片描述
第五个公式:(此处论文中似乎没有指出如何得出的此公式。)
计算 B 7 B_7 B7 B 1 4 B_14 B14的亮温差,由于只有 B 7 B_7 B7与太阳天顶角有线性关系,我猜测,此处公式得出的是按照 B 1 4 B_14 B14最大的亮温计算的,因为 B 1 4 B_14 B14的亮温离散分布且波动不大只有[280,282.5]所以影响不大。得出亮温差公式在公式分为内的属于雾。

	对于算法的构造还是不太明白的看流程图大概就懂了

(3)算法流程

流程非常简单,对于输入的图像符合标准的就是雾,不符合的就是其他。
在这里插入图片描述

3.实验

选取了黄渤海地区,根据中国气象局的预报作为验证数据。
在这里插入图片描述

在这里插入图片描述

三、总结

有两个问题:

1.青岛部分,天气并没有海雾,但是由于低云的影响,所以判断成了海雾。也就是说,低云和海雾的区分做的还是不太好有待优化。

2.在太阳天顶角到达88度后,近红外波段辐射率接近0,此时的海雾的亮温和海面的温度基本相同。说明很有可能将海面识别为雾,很难用此方法检测。

3.对于海雾和低云的分离,单纯从光谱特征很难分离他们。

这篇关于基于动态阈值算法的黎明和黄昏时间海雾检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/680130

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X