Pandas.DataFrame.cumsum() 累积和 详解 含代码 含测试数据集 随Pandas版本持续更新

本文主要是介绍Pandas.DataFrame.cumsum() 累积和 详解 含代码 含测试数据集 随Pandas版本持续更新,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于Pandas版本: 本文基于 pandas2.2.0 编写。

关于本文内容更新: 随着pandas的stable版本更迭,本文持续更新,不断完善补充。

传送门: Pandas API参考目录

传送门: Pandas 版本更新及新特性

传送门: Pandas 由浅入深系列教程

本节目录

  • Pandas.DataFrame.cumsum()
    • 计算公式:
    • 语法:
    • 返回值:
    • 参数说明:
      • axis 指定计算方向(行或列)
      • skipna 忽略缺失值
      • *args,**kwargs
    • 相关方法:
    • 示例:
      • 例1:如果是 `Series` 始终保持 `axis=0`,即计算 `Series` 所有元素的累积和。
      • 例2:字符串求累和,相当于是字符串拼接
      • 例3、计算每列累积和
      • 例4、计算每行累积和
      • 例5、默认会跳过缺失值,以缺失值上面的最近有效值,进行后面的计算
      • 例6、如果不忽略缺失值,后面所有的结果,将都是缺失值。

Pandas.DataFrame.cumsum()

Pandas.DataFrame.cumsum 方法用于返回行或列每一个元素与前面所有元素的累积和

⚠️ 注意 :

  1. 字符串可以求累积和,相当于字符串拼接。 例2

    • 字符串不能和任何其他类型数据混用,比如 缺失值、数值,否则报错 TypeError

计算公式:

  • Pandas累积和计算公式:

    S i = x 1 + x 2 + … + x i S_i = x_1 + x_2 + \ldots + x_i Si=x1+x2++xi

    S i S_i Si 表示当前位置的累积和, x 1 + … + x i x_1+ \ldots + x_i x1++xi 表示从起始位置加到当前位置。

语法:

DataFrame.cumsum(axis=None, skipna=True, *args, **kwargs)

返回值:

  • Series or DataFrame

参数说明:

axis 指定计算方向(行或列)

  • axis : {0 or ‘index’, 1 or ‘columns’}, default 0

    axis 参数,用于指定计算方向,即按行计算或按列计算累积和:

    • 如果是 Series 此参数无效,将始终保持 axis=0,即计算整列的累积和。例1
    • 如果是 DataFrame 默认为 axis=0 即计算每一列的累积和。并有以下参值可选:
      • 0 or ‘index’: 计算每列的累积和。 例3
      • 1 or ‘columns’: 计算每行的累积和。例4

skipna 忽略缺失值

  • skipna : bool, default True >

    skipna 参数,用于指定求累积和的时候是否忽略缺失值,默认 skipna=True 表示忽略缺失值:

    • True: 忽略缺失值。当遇到缺失值,会跳过缺失值,以缺失值上面的最近有效值继续后面的计算。 例5
    • False: 不忽略缺失。但是后面的所有结果将都是缺失值。例6

*args,**kwargs

  • 为了保持与 Numpy 的兼容性而保留的参数,一般不需要传递任何内容。

相关方法:

➡️ 相关方法


  • Series.cumsum

    Series 累积和

  • DataFrame.sum

    求和

  • DataFrame.cummax

    累积最大值

  • DataFrame.cummin

    累积最小值

  • DataFrame.cumprod

    累积乘积

示例:

测试文件下载:

本文所涉及的测试文件,如有需要,可在文章顶部的绑定资源处下载。

若发现文件无法下载,应该是资源包有内容更新,正在审核,请稍后再试。或站内私信作者索要。

测试文件下载位置.png

测试文件下载位置

例1:如果是 Series 始终保持 axis=0,即计算 Series 所有元素的累积和。

import numpy as np
import pandas as pds = pd.Series([24.0, np.nan, 21.0, 33, 26], name="age")
s.cumsum()
0     24.0
1      NaN
2     45.0
3     78.0
4    104.0
Name: age, dtype: float64

例2:字符串求累和,相当于是字符串拼接

import numpy as np
import pandas as pddf = pd.DataFrame({"第一列": ["一", "二", "三"], "第二列": ["四", "五", "六"]})df.cumsum()
第一列第二列
0
1一二四五
2一二三四五六

例3、计算每列累积和

import numpy as np
import pandas as pddf = pd.DataFrame([[2.0, 1.0],[3.0, np.nan],[1.0, 0.0]],columns=list('AB'))df.cumsum()
AB
02.01.0
15.0NaN
26.01.0

例4、计算每行累积和

import numpy as np
import pandas as pddf = pd.DataFrame([[2.0, 1.0, 3.0], [3.0, np.nan, 5.0], [1.0, 1.0, 1.0], [1.0, 0.0, 2.0]],columns=list("ABC"),
)df.cumsum(axis=1)
ABC
02.03.06.0
13.0NaN8.0
21.02.03.0
31.01.03.0

例5、默认会跳过缺失值,以缺失值上面的最近有效值,进行后面的计算

import numpy as np
import pandas as pddf = pd.DataFrame([[2.0, 1.0],[3.0, np.nan],[1.0, 1.0],[1.0, 0.0]],columns=list('AB'))df.cumsum()
AB
02.01.0
15.0NaN
26.02.0
37.02.0

例6、如果不忽略缺失值,后面所有的结果,将都是缺失值。

import numpy as np
import pandas as pddf = pd.DataFrame([[2.0, 1.0],[3.0, np.nan],[1.0, 1.0],[1.0, 0.0]],columns=list('AB'))df.cumsum(skipna=False)
AB
02.01.0
15.0NaN
26.0NaN
37.0NaN

这篇关于Pandas.DataFrame.cumsum() 累积和 详解 含代码 含测试数据集 随Pandas版本持续更新的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/678692

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa