【Simulink系列】——动态系统仿真 之 离散系统线性离散系统

2024-02-04 18:36

本文主要是介绍【Simulink系列】——动态系统仿真 之 离散系统线性离散系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、离散系统定义

离散系统是指系统的输入与输出仅在离散的时间上取值,而且离散的时间具有相同的时间间隔。满足下列条件:

①系统(的输入输出)每隔固定时间间隔才更新一次。固定时间间隔称为采样时间。

②系统的输出依赖当前的输入、以往的输入和输出见数学描述

③系统具有离散的状态。状态是指系统前一时刻的输出量。

设系统的输入变量为u\left(n T_s\right), n=0,1,2, \cdots,其中n为采样时刻,Ts为系统的采样时间。由于Ts为固定值,因而系统输入u\left(n T_s\right)常被记为u(n)。设系统输出为y(nTs),也可记为y(n),则离散系统的数学描述为:

y(n)=f(u(n), u(n-1), \cdots, y(n-1), y(n-2), \cdots)

注:离散系统初始状态的确定非常重要。

二、离散Simulinlk仿真

有一个人口变化系统。设某一年的人口数目为p(n),其中n表示年份,它与上一年的人口数目p(n-1)、人口繁殖速率r以及新增资源所能满足的个体数目K之间的动力学模型如下差分方程:

p(n)=r p(n-1)\left[1-\frac{p(n-1)}{K}\right]

此差分方程可看出系统为非线性离散系统。设人口初始值p(0)=600000,人口繁殖速率r为1.08,新增资源满足个体数K=200000,建立Simulink模型,分析人口数目的变化趋势。

(1)建立系统模型

Unit Delay为单位延迟模块,主要功能是将输入信号延迟一个采样时间,这里将p(n)作为它的输入以得到p(n-1)。

(2)模块参数设置

人口繁殖速率r:取1.08,
1/K:取1/2000000,
Unit Delay的初始值为初始人口数目:取600000。

(3)仿真参数设置

仿真时间0~50s,求解器设置为discrete离散,即需要使用离散求解器;仿真步长选择Fixed-step定步长。

(4)仿真运行

注:若离散系统中所有模块的采样时间均相同,则此系统为单速率离散系统(选定步长求解器),否则为多速率离散系统(选变步长仿真更好)。

三、线性离散系统定义

在离散系统中,线性离散系统具有重要的地位。当离散系统同时满足齐次性和叠加性时,即:

T\left\{\alpha u_{1}(n)+\beta u_{2}\left(n\right)\right\}=\alpha T\left\{u_{1}\left(n\right)\right\}+\beta T\left\{u_{2}\left(n\right)\right\}

此离散系统称为线性离散系统。最一般的数学描述为:

y(n)=f\bigl(u(n),u(n-1),\cdots;y(n-1),y(n-2),\cdots\bigr)

也可用差分方程描述(上为状态方程,下为输出方程):

\begin{array}{rl}&x(n+1)=f\big(x(n),u(n),n\big)\\&y(n)=g\big(x(n),u(n),n\big)\end{array}

除了上述两种方式,针对线性离散系统本身的特点,常使用Z变换来描述线性离散系统。Z变换时对离散信号进行分析的一个强有力工具,尤其线性离散系统

对于一个离散信号u(n),其Z变换为U\bigl(z\bigr)=\sum_{k=-\infty}^{\infty}u\bigl(k\bigr)z^{-k},一般离散系统的时间大于0,则Z变换为U\bigl(z\bigr)=\sum_{k=0}^{\infty}u\bigl(k\bigr)z^{-k},简记为U(z)=Z\left\{u(n)\right\}

利用离散信号的Z变换结果得到原离散信号的过程,叫做Z变换的逆变换,简记为u\left(z\right)=Z^{-1}\left\{U(n)\right\}

Z变换有两个重要性质

①Z变换同时满足齐次性和叠加性。

Z\left\{\alpha u_{1}\left(n\right)+\beta u_{2}\left(n\right)\right\}=\alpha Z\left\{u_{1}\left(n\right)\right\}+\beta Z\left\{u_{2}\left(n\right)\right\}

②若u(n)的Z变换为U(z),则u(n-1)的Z变换为z^{-1}U(z)

四、线性离散系统Simulink仿真

低通滤波器模型。它可以滤除信号中的高频部分,以获取信号中有用的低频信号,一个低通数字滤波器的差分方程如下:

y(n)-1.6y(n-1)+0.7y(n-2)=0.04u(n)+0.08u(n-1)+0.04u(n-2)

其中u(n)为滤波器输入,y(n)为滤波器输出。可见其为线性离散系统。

(1)Z变换

对该滤波器系统的差分方程进行Z变换,可得下面描述:

\frac{Y(z)}{U(z)}=\frac{0.04+0.08z^{-1}+0.04z^{-2}}{1-1.6z^{-1}+0.7z^{-2}}

(2)建立系统模型

发送方首先使用高频正弦波(载波)对一低频锯齿波(原信号波)进行幅度调制,然后在无损信道中传递此幅度调制信号;接受方在接收到幅度调制信号后,首先进行解调,然后使用低通数字滤波器对解调后的信号进行滤波以获得低频锯齿波信号

Sine Wave用来产生高频载波信号,Sine Wave1用来产生解调信号;

Signal Generator产生低频锯齿波信号;

Discrete Filter表示数字滤波器。

(3)模块参数设置

高频载波(Sine Wave)频率设置为1000rad/sec,其余默认;Signal Generator波形选择锯齿波sawtooth,其余默认;解调正弦波(Sine Wave1)频率也为1000rad/sec,采样时间0.005s。

Discrete Filter设置如下:

注:数字滤波器的采样时间应该与解调信号的采样时间一致。

(4)仿真参数设置

仿真时间0~10s,选择求解器并设置为Variable-step变步长ode45(Dormand-Prince),最大步长设置为0.005

(5)仿真运行

数字滤波器的输出信号与原始锯齿信号并不完全一致,存在一定失真,这种失真不可避免,因为实际上并不存在理想的滤波器,调制时信号之间不可避免会相互干扰。

疑问:博友们,这里遇到各问题,锯齿波的scope显示周期与设定的信号周期不一致???

往期精彩

STM32专栏(付费9.9)icon-default.png?t=N7T8http://t.csdnimg.cn/E2F88

OpenCV-Python专栏(付费9.9)icon-default.png?t=N7T8http://t.csdnimg.cn/zK1jV

AI底层逻辑专栏(付费9.9)icon-default.png?t=N7T8http://t.csdnimg.cn/zic0f

机器学习专栏(免费)icon-default.png?t=N7T8http://t.csdnimg.cn/FaXzAFreeRTOS专栏(免费)icon-default.png?t=N7T8http://t.csdnimg.cn/SjIqU电机控制专栏(免费)icon-default.png?t=N7T8http://t.csdnimg.cn/FNWM7

这篇关于【Simulink系列】——动态系统仿真 之 离散系统线性离散系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/678442

相关文章

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

2.1/5.1和7.1声道系统有什么区别? 音频声道的专业知识科普

《2.1/5.1和7.1声道系统有什么区别?音频声道的专业知识科普》当设置环绕声系统时,会遇到2.1、5.1、7.1、7.1.2、9.1等数字,当一遍又一遍地看到它们时,可能想知道它们是什... 想要把智能电视自带的音响升级成专业级的家庭影院系统吗?那么你将面临一个重要的选择——使用 2.1、5.1 还是

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

windows系统下shutdown重启关机命令超详细教程

《windows系统下shutdown重启关机命令超详细教程》shutdown命令是一个强大的工具,允许你通过命令行快速完成关机、重启或注销操作,本文将为你详细解析shutdown命令的使用方法,并提... 目录一、shutdown 命令简介二、shutdown 命令的基本用法三、远程关机与重启四、实际应用

Debian如何查看系统版本? 7种轻松查看Debian版本信息的实用方法

《Debian如何查看系统版本?7种轻松查看Debian版本信息的实用方法》Debian是一个广泛使用的Linux发行版,用户有时需要查看其版本信息以进行系统管理、故障排除或兼容性检查,在Debia... 作为最受欢迎的 linux 发行版之一,Debian 的版本信息在日常使用和系统维护中起着至关重要的作

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

什么是cron? Linux系统下Cron定时任务使用指南

《什么是cron?Linux系统下Cron定时任务使用指南》在日常的Linux系统管理和维护中,定时执行任务是非常常见的需求,你可能需要每天执行备份任务、清理系统日志或运行特定的脚本,而不想每天... 在管理 linux 服务器的过程中,总有一些任务需要我们定期或重复执行。就比如备份任务,通常会选在服务器资