爬虫工作量由小到大的思维转变---<第四十三章 Scrapy Redis mysql数据连通问题(2)>

本文主要是介绍爬虫工作量由小到大的思维转变---<第四十三章 Scrapy Redis mysql数据连通问题(2)>,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:

接上一章的爬虫工作量由小到大的思维转变---<第四十一章 Scrapy Redis 转mysql数据连通问题>-CSDN博客

这一章主要是讲关于多机连上sql要注意的问题!

正文:

会遇到哪些问题:

  1. 数据重复写入:当多个Scrapy-Redis实例同时运行并将数据写入同一个MySQL数据库时,可能会导致数据重复写入的问题。这是因为Scrapy-Redis使用分布式爬取的原理,多个实例可能会同时获取相同的URL并产生重复的数据。为了解决这个问题,可以在Scrapy-Redis中添加去重处理,例如使用请求指纹(request fingerprint)进行去重。

  2. 数据冲突和并发性问题:在多台机器同时向同一个MySQL数据库写入数据时,可能会出现数据冲突和并发性问题。这是因为多个机器同时写入数据时,可能会对同一个数据库表进行操作,导致数据的一致性和完整性问题。为了解决这个问题,可以考虑使用数据库事务(database transaction)、加锁机制或者分布式锁来确保数据的一致性和并发性。

  3. 数据同步延迟:由于网络延迟等原因,当多台机器同时写入MySQL数据库时,数据同步可能会有一定的延迟。这意味着数据在一个机器上写入后,需要一定的时间才能在其他机器上同步更新。为了解决这个问题,可以使用异步写入或者定时任务等方法来确保数据同步并保持一致性。

  4. 数据库连接数限制:当多台机器同时连接到同一个MySQL数据库时,可能会遇到数据库连接数限制的问题。MySQL服务器通常有默认的最大连接数限制,如果超过了这个限制,可能会导致连接被拒绝或无法正常连接。为了解决这个问题,可以根据需求调整MySQL服务器的最大连接数配置,或者使用连接池来管理连接和提高连接的复用性。

 在使用Scrapy-Redis在多台电脑上向同一个MySQL数据库写入数据时,需要注意数据重复写入、数据冲突和并发性问题、数据同步延迟以及数据库连接数限制等可能遇到的问题。根据实际需求,可以使用去重处理、事务或锁机制、异步写入或定时任务、调整最大连接数等方法来解决这些问题。保证数据的一致性、完整性和高可用性是在多台机器上同时写入MySQL时需要特别关注的问题。

用一个最简单的方式解决一些棘手的问题:

from sqlalchemy import create_engineengine = create_engine("mysql+pymysql://用户名:密码@localhost(或者ip地址):3306/数据库名",pool_size=10,  # 连接池大小max_overflow=20,  # 允许超出连接池大小的最大连接数pool_timeout=30,  # 获取连接的最大等待时间(秒)pool_recycle=1800,  # 连接回收时间(秒)
)

在通过pymysql和SQLAlchemy进行多并发写入时,使用如上所示的设置有以下好处:

  1. Connection Pool(连接池):通过设置pool_size参数,可以指定连接池的大小。连接池允许维护多个数据库连接,这样在并发写入时可以重用数据库连接,避免频繁的建立和关闭连接,提高性能和效率。

  2. Max Overflow(超出连接池大小的最大连接数):通过设置max_overflow参数,可以允许连接池中的连接数量超过pool_size的大小。当并发写入的请求数量超过连接池大小时,可以创建额外的连接以满足更高的并发需求,避免请求被阻塞或排队等待。

  3. Pool Timeout(获取连接的最大等待时间):通过设置pool_timeout参数,可以指定获取数据库连接的最大等待时间。如果连接池中的连接已被其他连接占用完,并且在超过指定的等待时间后仍然没有可用连接,则新的请求将放弃等待并抛出适当的异常或错误。

  4. Pool Recycle(连接回收时间):通过设置pool_recycle参数,在连接周期内保持连接的最大时间。这有助于防止连接变得过期或无效,因为在一段时间后连接将被回收并重新创建,以避免潜在的性能问题。

通过合理设置连接池和其他参数,可以优化代码在多并发写入场景下的数据库连接和资源管理。这些设置可以提高数据库的性能和可扩展性,同时避免与数据库的连接问题相关的错误和延迟。

这篇关于爬虫工作量由小到大的思维转变---<第四十三章 Scrapy Redis mysql数据连通问题(2)>的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/677581

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat