Cocos2d-x 地图行走的实现2:SPFA算法

2024-02-04 10:48

本文主要是介绍Cocos2d-x 地图行走的实现2:SPFA算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  本文乃Siliphen原创,转载请注明出处:http://blog.csdn.net/stevenkylelee


  上一节《Cocos2d-x 地图行走的实现1:图论与Dijkstra算法》

  http://blog.csdn.net/stevenkylelee/article/details/38408253


  下一节《Cocos2d-x 地图行走的实现3:A*算法》

  http://blog.csdn.net/stevenkylelee/article/details/38456419


  本节实践另一种求最短路径算法:SPFA


1.寻路算法实现上的优化


  上一节我们实现的Dijkstra用了一个哈希表来保存搜索到的路径树。如果能用直接的访问的方式,就不要用哈希表,因为直接访问的方式会比哈希表更快。我们修改一下图顶点的数据结构。如下:


/*图顶点
*/
class Vertex
{friend class Graph ;public:Vertex( const string& Name ){m_strId = Name ;m_pGraph = 0 ;}~Vertex( ) { };public:// 附加数据unordered_map< string , void*> UserData ;public : const unordered_map< string , Edge* >& GetEdgesOut( ) const { return m_EdgesOut ; }const unordered_map< string , Edge* >& GetEdgesIn( ) const { return m_EdgesIn ; }const string& GetId( ) const { return m_strId ; }const string& GetText( ) const { return m_Text ; }void SetText( const string& Text ) { m_Text = Text ; }Graph * GetGraph( ) { return m_pGraph ; }protected: // 出边集合unordered_map< string , Edge* > m_EdgesOut ; // 入边集合unordered_map< string , Edge* > m_EdgesIn ;// 节点表示的字符串string m_Text ; // 节点的IDstring m_strId ; // 所属的图Graph * m_pGraph ; public : // 寻路算法需要的数据struct Pathfinding{// 路径代价估计int Cost ; // 标识符int Flag ;// 顶点的前驱顶点。Vertex * pParent ; Pathfinding( ){Cost = 0 ; Flag = 0 ; pParent = 0 ; }}PathfindingData ;};

  修改的地方是:把int m_Cost成员变量删掉,末尾增加了一个Pathfinding类型的字段。这个结构体负责保存寻路算法所需要的一些变量。虽然我们可以像这样unordered_map< Vertex* , int > , unordered_map< Vertex* , Vertex*> 动态地为顶点增加一些“临时属性”,但这种做法运行起来比较慢。Pathfinding的pParent字段表示寻路算法执行完后,该顶点到起始顶点的一条”反向路径“,一直查找pParent直到为空,可追溯到起始顶点,这就是一条路径。起始顶点的Pathfinding::pParent肯定为空,因为它就是路径树的根节点。如果非起始顶点的Pathfinding::pParent为空,表示起始顶点到该顶点没有通路。


  上一节我们实现的Dijkstra是按照Dijkstra算法的思想用最简单的方法直接做的。这样做是为了更简单地表达出算法的思想。Dijkstra的算法优化就是在于怎样做”选出拥有最小路径估计的顶点。关于这个问题的优化,可以搜索下 优先级队列二项堆,斐波那契堆。


  std有一个叫 priority_queue 的容器,就是优先级队列。是用priority_queue还是自己写一个优先级队列来优化,你们自己考虑吧。俗话说,师傅领进门,修行靠个人。(什么堆来堆去的数据结构,哥早已忘得一干二净了 睡觉


2.SPFA算法介绍


  SPFA是 Shortest Path Faster Algorithm 的缩写,中文直译过来就是:最短路径快速算法。作用在稀疏图上通常比Dijkstra更快,是一种高效的求最短路径算法。和Dijkstra一样,也是求某个顶点到其他所有顶点的最短路径的一种算法。用我自己理解的话来说,SPFA是这样:


  2.1.SPFA算法需要什么

  SPFA需要用到一个先进先出的队列Q。

  SPFA需要对图中的所有顶点做一个标示,标示其是否在队列Q中。可以用哈希表做映射,也可以为顶点增加一个字段。后者的实现效率更高。


  2.2.SPFA是怎样执行的

  2.2.1 SPFA的初始化

  SPFA的初始化和Dijkstra类似。

  先把所有顶点的路径估计值初始化为代价最大值。比如:0x0FFFFFFF。

  所有顶点都标记为不在队列中。

  起始顶点放入队列Q中。

  起始顶点标记在队列中。

  起始顶点的最短路径估计值置为最小值,比如0。

  然后下面是一个循环

  2.2.2 SPFA循环

  循环结束的条件是队列Q为空。第一次进入循环的时候,只有起始顶点一个元素。

  每次循环,弹出队列头部的一个顶点。

  对这个顶点的所有出边进行松弛。如果松弛成功,就是出边终点上对应的那个顶点的路径代价值被改变了,且这个被松弛的顶点不在队列Q中,就把这个被松弛的顶点入队Q。注意,这里顶点入队的条件有2:1.松弛成功。2.且不在队列Q中。

  当队列Q没有了元素。算法结束。


  2.3.SPFA伪代码


void Spfa( 图G,起始顶点VStart )
{foreach( 对图G中的所有顶点进行遍历,迭代对象v表示遍历到的每一个顶点对象){设置顶点v的路径代价估计值为代价最大值,例如:0x0FFFFFFF设置标示顶点v不在队列中顶点v的前驱顶点都为空}起始顶点VStart路径代价估计值为最小值0起始顶点VStart入队Qfor( 如果队列Q不为空){队列Q弹出一个队头元素v记录v已经不在队列Q中了for( 遍历从队列Q中弹出的队头顶点v的每一个出边){u = 边终点上的顶点 Relax( v , u,边上的权值)if( Relax松弛成功了 && 顶点u不在队列Q中){u入队Q记录u在队列中了}}}
}

  

  从以上伪代码来看,SPFA和BFS很像:都用了队列,都是从队列弹出一个元素进行扩展子节点。SPFA不同于BFS的扩展:SPFA的扩展子节点是有条件的,根据松弛的结果。


3.SPFA算法的实现


  Dijkstra不需要关心松弛的结果,所以之前的Dijkstra的Relax函数返回值为void。而SPFA是需要知道松弛是否成功的,它根据此结果决定松弛的顶点是否需要入队。所以,我们实现的SPFA的Relax函数需要返回bool。


  以下,是我的SPFA实现代码


  Spfa.h


#pragma once#include "Graph\GraphPathfinding.h"class Spfa :public GraphPathfinding
{
public:Spfa( );~Spfa( );public : virtual void Execute( const Graph& Graph , const string& VetexId ) ; private:inline bool Relax( Vertex* pStartVertex , Vertex* pEndVertex , int Weight ) ;};


  Spfa.cpp


#include "Spfa.h"
#include <queue>
using namespace std ;Spfa::Spfa( )
{
}Spfa::~Spfa( )
{
}void Spfa::Execute( const Graph& Graph , const string& VetexId )
{// 取得图的顶点集合const auto& Vertexes = Graph.GetVertexes( ) ; //  取得起始顶点对象Vertex *pVStart = Vertexes.find( VetexId )->second   ;// Spfa算法需要一个队列保存顶点queue< Vertex* > Q ; // 初始化for ( auto& it : Vertexes ){Vertex *pV = it.second ; pV->PathfindingData.Cost = 0x0FFFFFFF ;//IsInQueue[ pV ] = false ; pV->PathfindingData.Flag = false ;pV->PathfindingData.pParent = 0 ; // 顶点的父路径都设置为空}pVStart->PathfindingData.Cost = 0 ;			// 起始顶点的路径代价为0pVStart->PathfindingData.Flag = true ;		// 起始顶点在队列中//m_Ret.PathTree[ pVStart ] = 0 ;				//  起始顶点的父路径为空Q.push( pVStart ) ;									// 起始顶点先入队// spfa算法for ( ; Q.size( ) ;  ){auto pStartVertex = Q.front( ) ; Q.pop( ) ;	// 队列弹出一个顶点vpStartVertex->PathfindingData.Flag = false ;// 松弛v的所有出边const auto& Eo = pStartVertex->GetEdgesOut( ) ;for ( auto& it : Eo ){auto pEdge = it.second ; auto pEndVertex = pEdge->GetEndVertex( ) ;bool bRelaxRet = Relax( pStartVertex , pEndVertex , pEdge->GetWeight( ) ) ;if ( bRelaxRet ){// 如果对于出边松弛成功,且出边对应的终点顶点不在队列中的话,就插入队尾if ( pEndVertex->PathfindingData.Flag == false ){Q.push( pEndVertex ) ;pEndVertex->PathfindingData.Flag = false ;}}}// end for}// end for}bool Spfa::Relax( Vertex* pStartVertex , Vertex* pEndVertex , int Weight )
{int n = pStartVertex->PathfindingData.Cost + Weight ;if ( n < pEndVertex->PathfindingData.Cost ){// 更新路径代价pEndVertex->PathfindingData.Cost = n ;// 更新路径//m_Ret.PathTree[ pEndVertex ] = pStartVertex ; pEndVertex->PathfindingData.pParent = pStartVertex ;return true ;}return false ; 
}

4.Dijkstra与SPFA在实际上的比较


  下图是构造了一个比较大的图,对于一次寻路同时用了Dijkstra和SPFA。图的左下角显示2个算法所用的时间。




  对于上图来说,SPFA的执行要快于Dijkstra。当然,是和没有用任何优化的Dijkstra比较的结果。一般来说Dijkstra运行比较稳定,优化后也可以得到不错的性能。而SPFA的优势在于稀疏图,也就是边数较少的图。原因很明显,SPFA不需要像Dijkstra那样去选最小路径代价的顶点出来松弛,它只是从队列里面弹出一个即可。如果边数越少,入队的顶点也就越少。


5.本文工程源代码下载


  上一节的工程代码不小心弄成了8分。这次设置为0分啦。

  下载地址:http://download.csdn.net/detail/stevenkylelee/7731827








这篇关于Cocos2d-x 地图行走的实现2:SPFA算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/677230

相关文章

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主

SpringBoot实现基于URL和IP的访问频率限制

《SpringBoot实现基于URL和IP的访问频率限制》在现代Web应用中,接口被恶意刷新或暴力请求是一种常见的攻击手段,为了保护系统资源,需要对接口的访问频率进行限制,下面我们就来看看如何使用... 目录1. 引言2. 项目依赖3. 配置 Redis4. 创建拦截器5. 注册拦截器6. 创建控制器8.