GoogleLeNet(Inception-V1)论文及代码解析

2024-02-04 03:48

本文主要是介绍GoogleLeNet(Inception-V1)论文及代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • GoogleLeNet论文

  • tensorflow代码分析

  • 小结

GoogleLeNet论文

       GoogleLeNet是2014年ImageNet中ILSVRC14竞赛的冠军,和VGG网络是同一届,VGG网络是当年竞赛的亚军。但是实际上两个网络的TOP-5错误率相差并不多,GoogleLeNet的网络结构相对VGG复杂一些,是一个22层的网络,并且提出了一种Inception的结构,是一个很大的进步。

       论文地址 论文的标题是“Going deeper with convolutions”,跟VGG一样也是遵循需要将网络设计的更深的思想。网络名字取名为GoogleLeNet是为了向CNN网络的开山鼻祖LeNet致敬。

1.前言

      论文中作者花了大量的篇幅来描述当前分类和检测网络取得的成绩,以及遇到的问题,然后引出作者对现状改进的思路。

      众所周知,改进深度神经网络最直接的方式是增加网络的大小,包括增加深度和宽度。增加深度就是增加神经网络的层数,增加宽度就是增加每一层的units个数。但是增加了深度和宽度会带来两个问题:1.因为参数变多而使得网络更加容易overfitting,反而降低了精度。2.会大大增加计算量,而且可能训练出来部分参数最终为0,这样在计算资源有限的情况下浪费了计算资源。所以我们最终的目标是:减少参数,减少计算量,增加深度,增加宽度。

       解决方法就是将全连接替换为稀疏连接结构,但是现有的计算方式对非均匀的稀疏计算效率非常低,所以作者提出了自己的改进方式。

2.Inception模型

inception-v1-block

       上图是作者提出的两种Inception的模型,b模型是a模型的改进版本。

       先说a模型,论文中说是以一种稠密组件去逼近和替代一个最优的局部稀疏结构。我的理解是这种连接模型既会有四种连接方式带来的信息汇总,而且相对直接3x3的Conv进行连接的方式参数反而有所减少。为何参数会有减少呢?举个下图的例子(只是举个例子,并不是真实使用情况):

        接着作者又发现,虽然参数量是有减少,但是减少的并不是太多,而且如果输入的数据channel值比较大,参数量仍然会比较大,所以作者提出了b模型。b模型相对a模型而言,在使用3x3或者5x5的Conv连接之前用了1x1的Conv进行降维,这样会使参数量再一次减少,并且在1x1Conv后也使用非线性激活就增加了网络的非线性。参数量变化如下图(只是举个例子,并不是真实使用情况):

        总之,Inception模型的好处是既能增加网络的深度和宽度,又不会增加计算量,而且稀疏连接的方式还能有助于减少过拟合。

3.网络结构

论文中的网络结构如下图:

structure

  • Input为224x224x3的RGB图片,同样减去每个颜色通道的均值(同vgg网络一样)
  • #3x3 reduce表示在3x3Conv之前1x1Conv连接的channel数量,同样#5x5 reduce表示在5x5Conv之前1x1Conv链接的channel数量.
  • pool proj表示inception中max pooling后的1x1Conv连接的channel数量
  • 只计算有参数的层数是22层,所有的卷基层都用Relu激活,包括inception内部的卷积
  • 作者发现去掉最后的FC,改为avg pool,精确度有提升,但是还要保留后面的dropout

另外作者担心这么深的网络越往后信息的传播能力会受损,但是作者发现中间层的网络还带有比较多的信息,因此在inception(4a)和inception(4d)后面增加了一个比较小的网络,做了softmax输出,和最后的softmax输出相加,但是权重设置为0.3.也就是最后的output是softmax2+0.3*softmax1+0.3*softmax0

                                                            inception(4a)处的softmax

                                                     inception(4d)处的softmax

这篇关于GoogleLeNet(Inception-V1)论文及代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/676271

相关文章

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

java解析jwt中的payload的用法

《java解析jwt中的payload的用法》:本文主要介绍java解析jwt中的payload的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解析jwt中的payload1. 使用 jjwt 库步骤 1:添加依赖步骤 2:解析 JWT2. 使用 N

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析