本文主要是介绍基于YOLOv8的工业油污缺陷检测,多种优化方法---SPPF创新结构,重新设计全局平均池化层和全局最大池化层(三),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
💡💡💡本文主要内容:详细介绍了工业油污缺陷检测整个过程,从数据集到训练模型到结果可视化分析,以及如何优化提升检测性能。
💡💡💡加入SPPF_improve mAP@0.5由原始的0.648提升至0.699
1.工业油污数据集介绍
三星油污缺陷类别:头发丝和小黑点,["TFS","XZW"]
数据集大小:660张
数据集地址:https://download.csdn.net/download/m0_63774211/87741209
2.基于YOLOv8的工业油污检测
2.1 修改sanxing.yaml
path: ./data/sanxing # dataset root dir
train: trainval.txt # train images (relative to 'path') 118287 images
val: test.txt # val images (relative to 'path') 5000 images# number of classes
nc: 2# class names
names:0: TFS1: XZW
2.2 开启训练
import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLOif __name__ == '__main__':model = YOLO('ultralytics/cfg/models/v8/yolov8.yaml')model.train(data='data/sanxing/sanxing.yaml',cache=False,imgsz=640,epochs=200,batch=16,close_mosaic=10,workers=0,device='0',optimizer='SGD', # using SGDproject='runs/train',name='exp',)
3.结果可视化分析
YOLOv8 summary (fused): 168 layers, 3006038 parameters, 0 gradients, 8.1 GFLOPsClass Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:03<00:00, 1.30s/it]all 66 187 0.741 0.554 0.648 0.302TFS 66 130 0.604 0.423 0.531 0.242XZW 66 57 0.877 0.684 0.766 0.361
F1_curve.png:F1分数与置信度(x轴)之间的关系。F1分数是分类的一个衡量标准,是精确率和召回率的调和平均函数,介于0,1之间。越大越好。
TP:真实为真,预测为真;
FN:真实为真,预测为假;
FP:真实为假,预测为真;
TN:真实为假,预测为假;
精确率(precision)=TP/(TP+FP)
召回率(Recall)=TP/(TP+FN)
F1=2*(精确率*召回率)/(精确率+召回率)
PR_curve.png :PR曲线中的P代表的是precision(精准率),R代表的是recall(召回率),其代表的是精准率与召回率的关系。
R_curve.png :召回率与置信度之间关系
results.png
mAP_0.5:0.95表示从0.5到0.95以0.05的步长上的平均mAP.
预测结果:
4.如何优化模型
我们在SPPF模块的基础上,利用全局平均池化层和全局最大池化层,加入一些全局背景信息和边缘信息,帮助网络更好的做出判断。
获取全局视角信息并减轻不同尺度大小所带来的影响
4.2对应yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPss: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPsm: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPsl: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF_improve, [1024, 5]] # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]] # cat head P4- [-1, 3, C2f, [512]] # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]] # cat head P5- [-1, 3, C2f, [1024]] # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
4.3 实验结果分析
mAP@0.5由原始的0.648提升至0.699
YOLOv8_SPPF_improve summary (fused): 174 layers, 3071958 parameters, 0 gradients, 8.1 GFLOPsClass Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:03<00:00, 1.27s/it]all 66 187 0.623 0.615 0.653 0.309TFS 66 130 0.424 0.577 0.519 0.241XZW 66 57 0.823 0.652 0.787 0.377
5.系列篇
系列篇1:DCNV4_SPPF提升近四个点
系列篇2:自研注意力CPM:提升近五个点
这篇关于基于YOLOv8的工业油污缺陷检测,多种优化方法---SPPF创新结构,重新设计全局平均池化层和全局最大池化层(三)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!