LLM之Agent(十一)| 多智能体框架CrewAI与AutoGen相比

2024-02-03 19:36

本文主要是介绍LLM之Agent(十一)| 多智能体框架CrewAI与AutoGen相比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       基于LLM构建的Agent中有一个明显的现象就是多智能体体系结构的表现要超越单智能体,即使单智能体使用无可挑剔的提示策略。本文将探索另一个有趣的多智能体框架——CrewAI。

一、CrewAI整体优势

       CrewAI可以应用在生成环境中。它在发言人的反应和编排上牺牲了一点灵活性和随机性,但在代理人的能力、任务和发言转向上获得了更多的确定性。到目前为止,唯一的编排策略是“sequential”,未来的发布计划是“consensual”和“hierarchical”。

       当我们在下一章中深入研究这个框架及其代码时,我们会发现确保任务由相关代理并按定义的顺序处理非常容易。你肯定不会在CrewAI中看到智能体之间的任何生动互动,比如一个智能体纠正另一个智能体,一个智能体的多次讲话。这些交互有利于实验或演示,但对需要高效、确定性和成本效益高的任务完成的真实LLM产品用处不大。因此,CrewAI优先考虑精简和可靠的方法,在一个强大的群聊中,每个人工智能代理都准确地知道该做什么以及他们的目标。

       在我看来,另一个也是最关键的优势是它蓬勃发展的工具和支持丰富的资源,可以用来构建代理和任务,这源于它是基于LangChain设计的智能体。LangChain是一个成熟的LLM框架,已经为LLM应用程序开发人员提供了丰富的工具和外围设备来增强语言模型的功能。

       CrewAI被证明适合熟悉LangChain的LLM应用程序开发人员,或者已经在其上构建应用程序的开发人员。对他们来说,将现有的单独代理集成到CrewAI框架中可以相对容易地实现。相比之下,AutoGen的学习曲线可能更陡峭,需要更多的时间来了解其用法并有效地集成代理。

二、CrewAI代码实战

      现在让我们深入了解如何在代码中实践这些优势。

2.1 CrewAI业务流程

      为了证明Agent顺序任务的易用性,我将使用之前AutoGen演示相同的任务,可以参考之前的博文LLM之Agent(九)|  通过API集成赋能Autogen Multi-Agent系统,该演示要求人工智能代理根据天气条件和所附的保险项目列表,生成一个包含适当活动的旅行计划。

构建一套群聊人工智能代理,需要以下角色:

  • Weather reporter:根据地点和日期提供天气状况。
  • Activity agent:根据地点和天气条件为旅行活动提供建议。
  • Travel advisor:生成包括每天活动在内的旅行行程。
  • Insurance agent:根据计划活动和潜在风险量身定制保险方案。

       为了详细说明,沟通应按顺序操作,如天气记者->活动代理人->旅行顾问->保险代理人

下面看一下如何实现:

a)步骤1-首先安装CrewAI软件包

pip install crewai

b)步骤2-导入包,并进行相关设置

      由于底层实现依赖于LangChain库,因此除了CrewAI之外,我们还必须导入相关的LangChain包

import osfrom crewai import Agent, Task, Crew, Processfrom langchain_openai import ChatOpenAIllm = ChatOpenAI(model="gpt-4-1106-preview")

c)步骤3-构建代理

       实施过程主要是为每个代理商设置系统提示。CrewAI将系统提示(可能还有代理描述)分为多个部分。看看天气预报员的代码:

Weather_reporter = Agent(  role='Weather_reporter',  goal="""provide historical weather     overall status based on the dates and location user provided.""",  backstory="""You are a weather reporter who provides weather     overall status based on the dates and location user provided.    You are using historical data from your own experience. Make your response short.""",  verbose=True,  allow_delegation=False,  llm=llm,)

       通常情况下,你应该填写rolegoalbackstory来构建一个代理。这三个部分的名称很容易理解,其中role指的是代理的名称,goal指的是创建该代理的原因,以及代理能力的backstoryallow_delegation是为将任务传递给下一个代理(如果该代理无法处理)时的情况定义的。

       按照相同的方法,让我们构造其余三个代理。

from langchain.agents import load_toolshuman_tools = load_tools(["human"])activity_agent = Agent(  role='activity_agent',  goal="""responsible for activities     recommendation considering the weather situation from weather_reporter.""",  backstory="""You are an activity agent who recommends     activities considering the weather situation from weather_reporter.    Don't ask questions. Make your response short.""",  verbose=True,  allow_delegation=False,  llm=llm,)travel_advisor = Agent(  role='travel_advisor',  goal="""responsible for making a travel plan by consolidating     the activities and require human input for approval.""",  backstory="""After activities recommendation generated     by activity_agent, You generate a concise travel plan     by consolidating the activities.""",  verbose=True,  allow_delegation=False,  tools=human_tools,  llm=llm,)Insure_agent = Agent(  role='Insure_agent',  goal="""responsible for listing the travel plan from advisor and giving the short     insurance items based on the travel plan""",  backstory="""You are an Insure agent who gives     the short insurance items based on the travel plan.     Don't ask questions. Make your response short.""",  verbose=True,  allow_delegation=False,  llm=llm,)

       人机交互是多智能体应用程序治理的基本组成部分,以确保人工智能代理在适当的监督下发言。与需要开发人员构建用户代理以结合人类交互的AutoGen框架不同,集成LangChain的CrewAI提供了一种简化的方法,通过将名为“human”的工具加载到tools参数中,然后在代理travel_advisor的定义中加入tools=human_tools即可无缝地集成人工输入。我们接下来应该做的是将这个人工提示写入我们将在下一步中介绍的Task对象的描述中。

d)步骤4-构建任务

       在CrewAI中,没有针对整个组的“整体”任务,而是应该通过Task()方法为每个代理分配单独的任务。

task_weather = Task(  description="""Provide weather     overall status in Bohol Island in Sept.""",  agent=Weather_reporter)task_activity = Task(  description="""Make an activity list    recommendation considering the weather situation""",  agent=activity_agent)task_insure = Task(  description="""1. Copy and list the travel plan from task_advisor. 2. giving the short     insurance items based on the travel plan considering its activities type and intensity.""",  agent=Insure_agent)task_advisor = Task(  description="""Make a travel plan which includes all the recommended activities, and weather,     Make sure to check with the human if the draft is good      before returning your Final Answer.    .""",  agent=travel_advisor)

必须使用agent=…为每个任务显式分配一个代理…。

      如果你更喜欢评论旅行计划人际互动,你可以试着附加这样的文字“Make sure to check with the human if the draft is good before returning your final answer”。

e)步骤5-组建团队并开始

       现在,是时候用编排策略将他们组成一支有能力的团队了。

crew = Crew(  agents=[Weather_reporter, activity_agent,  travel_advisor, Insure_agent, ],  tasks=[task_weather, task_activity,  task_advisor, task_insure, ],  verbose=2)result = crew.kickoff()

       在目前唯一的选择顺序策略中,会严格按照agents列表和tasks列表中的顺序执行。根据我的测试,你必须确保两个顺序都是一致的,但我认为设计需要改进,以保持tasks列表是任务执行顺序的唯一参考。将verbose设置为2将使系统打印[Info][Debug]信息。

       当一切就绪时,只需调用kickoff()函数就可以开始群聊生成。

       从正在进行的打印中,您将看到LangChain的ReAct流程为每个任务提供的熟悉输出。

        最后,最后的答案显示了预期的旅行计划:

2.2 带Tools的代理

       当我们通过AutoGen框架开发AI群聊时,使用OpenAI的函数调用功能来调用外部API或自定义函数以扩展代理的知识是非常方便的。不幸的是,函数调用仅适用于GPT模型,很少有经过微调的开源模型。通过使用LangChain框架,该工具界面自然支持在现实世界中与CrewAI代理交互,并可用于所有兼容的模型。尽管工具的可靠性低于函数调用,但当工具的函数不需要复杂的输入参数时,它非常适用于开源模型。

       让我们看看如何在我们的旅行计划应用程序中使用它。

a.预置工具

       首先,我们希望Activity_agent提供来自互联网搜索的旅行活动,而不是自行生产。像大多数LangChain示例一样,我们使用DuckDuckGo作为搜索工具,该工具已内置到LangChain库中了。

       安装DuckDuckGo软件包:

pip install duckduckgo_search

       定义搜索工具:

from langchain_community.tools import DuckDuckGoSearchRunsearch_tool = DuckDuckGoSearchRun()

          将search_tool插入activity_agent

activity_agent = Agent(  role='activity_agent',  goal="""responsible for actitivies     recommendation considering the weather situation from weather_reporter.""",  backstory="""You are an activity agent who recommends     activities considering the weather situation from weather_reporter.    Don't ask questions. Make your response short.""",  verbose=True,  allow_delegation=False,    tools=[search_tool],  llm=llm,)

         在最后一步中,不要忘记通知代理使用Task定义中的最新数据。

task2 = Task(  description="""Make a research for suitable and up-to-date activities     recommendation considering the weather situation""",  agent=activity_agent)

       现有的各种工具可以从LangChain集成中选择。

b.自定义工具

     有时用户会调用自定义函数或API,也可以通过LangChain的装饰器@toolStructuredTool方法创建自定义工具。

      假设我们希望weather_reporter能够通过自定义API搜索在线天气数据。让我们快速模拟一个。

from langchain.tools import BaseTool, StructuredTool, toolfrom langchain.pydantic_v1 import BaseModel, Fieldclass WeatherInput(BaseModel):    search_string: str = Field(description="the search string for the weather status")def get_weather(search_string:str) -> str:    """Look up the weather status"""    return "It's raining season with typhoons."weather_search = StructuredTool.from_function(    func=get_weather,    name="weather_search",    description="search for the weather status",    args_schema=WeatherInput,    return_direct=True,)

       现在创建了新工具weather_search,用于接受查询字符串以返回虚拟天气状态“It’s raining season with typhoons”。然后,我们更新代理以配备此工具:

Weather_reporter = Agent(  role='Weather_reporter',  goal="""providing weather     overall status based on the dates and location the user provided.""",  backstory="""You are a weather reporter who provides weather     overall status based on the dates and location the user provided.    Make your response short.""",  verbose=True,  allow_delegation=False,  tools=[weather_search],  llm=llm,)

        并更新任务:

task1 = Task(  description="""providing weather     overall status in Bohol Island in September.""",  agent=Weather_reporter)

       在应用程序重新运行后,根据结果,weather_reporteractivity_agent都将开始使用该工具来支持它们的响应生成(蓝色句子)。

2.3 开源模型

       由于该框架与OpenAI API的推理结构没有紧密绑定,因此在CrewAI中使用开源模型的局限性比AutoGen小得多。一个快速的方法是通过安装Ollama来部署一个本地模型。

步骤1-安装Ollama

       按照Ollama官方[2]页面上的说明将软件包安装到您的本地机器上,并确保您有足够的本地计算资源来运行模型。

步骤2——创建LLM实例

       要为代理创建Ollama模型的推理,只需要使用LangChain中的Ollama()方法定义一个新的llm。

from langchain.llms import Ollamallm_ollama = Ollama(model="YOUR_MODEL_NAME")

支持的型号列表可以参考:[3]

       然后,将llm_ollama提供给代理,例如:

Insure_agent = Agent(  role='Insure_agent',  goal="""responsible for listing the travel plan from advisor and giving the short     insurance items based on the travel plan""",  backstory="""You are an Insure agent who gives     the short insurance items based on the travel plan.     Don't ask questions. Make your response short.""",  verbose=True,  allow_delegation=False,  llm=llm_ollama,  )

       现在,Insure_agent将通过本地语言模型生成文本。

三、结论

       CrewAI在提供LangChain引入的可扩展功能方面具有明显优势,包括工具集成和对开源大型语言模型的支持。它的顺序编排能力有利于多智能体应用程序的生产。尽管有这些优势,但缺乏某些功能可能会阻碍其广泛采用——与OpenAI的助手和更复杂的编排相关的功能明显缺乏。CrewAI团队必须尽快解决这些差距并部署增强功能,以满足LLM应用程序开发的需求。

参考文献:

[1] https://levelup.gitconnected.com/for-a-multi-agent-framework-crewai-has-its-advantages-compared-to-autogen-a1df3ff66ed3

[2] https://ollama.ai/

[3] https://ollama.ai/library

这篇关于LLM之Agent(十一)| 多智能体框架CrewAI与AutoGen相比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/675169

相关文章

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

智能交通(二)——Spinger特刊推荐

特刊征稿 01  期刊名称: Autonomous Intelligent Systems  特刊名称: Understanding the Policy Shift  with the Digital Twins in Smart  Transportation and Mobility 截止时间: 开放提交:2024年1月20日 提交截止日

cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个?

跨平台系列 cross-plateform 跨平台应用程序-01-概览 cross-plateform 跨平台应用程序-02-有哪些主流技术栈? cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个? cross-plateform 跨平台应用程序-04-React Native 介绍 cross-plateform 跨平台应用程序-05-Flutte

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

Spring框架5 - 容器的扩展功能 (ApplicationContext)

private static ApplicationContext applicationContext;static {applicationContext = new ClassPathXmlApplicationContext("bean.xml");} BeanFactory的功能扩展类ApplicationContext进行深度的分析。ApplicationConext与 BeanF

数据治理框架-ISO数据治理标准

引言 "数据治理"并不是一个新的概念,国内外有很多组织专注于数据治理理论和实践的研究。目前国际上,主要的数据治理框架有ISO数据治理标准、GDI数据治理框架、DAMA数据治理管理框架等。 ISO数据治理标准 改标准阐述了数据治理的标准、基本原则和数据治理模型,是一套完整的数据治理方法论。 ISO/IEC 38505标准的数据治理方法论的核心内容如下: 数据治理的目标:促进组织高效、合理地

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

ZooKeeper 中的 Curator 框架解析

Apache ZooKeeper 是一个为分布式应用提供一致性服务的软件。它提供了诸如配置管理、分布式同步、组服务等功能。在使用 ZooKeeper 时,Curator 是一个非常流行的客户端库,它简化了 ZooKeeper 的使用,提供了高级的抽象和丰富的工具。本文将详细介绍 Curator 框架,包括它的设计哲学、核心组件以及如何使用 Curator 来简化 ZooKeeper 的操作。 1