《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第6章 逻辑斯谛回归与最大熵模型(1)6.1 逻辑斯谛回归模型

本文主要是介绍《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第6章 逻辑斯谛回归与最大熵模型(1)6.1 逻辑斯谛回归模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 第6章 逻辑斯谛回归与最大熵模型
  • 6.1 逻辑斯谛回归模型
      • 6.1.1 逻辑斯谛分布
      • 6.1.2 二项逻辑斯谛回归模型
      • 6.1.3 模型参数估计
      • 6.1.4 多项逻辑斯谛回归

《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第3章 k邻近邻法
《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第1章 统计学习方法概论
《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第 2章感知机
《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第3章 k邻近邻法
《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第4章 朴素贝叶斯法
《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第5章 决策树

我算是有点基础的(有过深度学习和机器学的项目经验),但也是半路出家,无论是学Python还是深度学习,都是从问题出发,边查边做,没有系统的学过相关的知识,这样的好处是入门快(如果想快速入门,大家也可以试试,直接上手项目,从小项目开始),但也存在一个严重的问题就是,很多东西一知半解,容易走进死胡同出不来(感觉有点像陷入局部最优解,找不到出路),所以打算系统的学习几本口碑比较不错的书籍。
  书籍选择: 当然,机器学习相关的书籍有很多,很多英文版的神书,据说读英文版的书会更好,奈何英文不太好,比较难啃。国内也有很多书,周志华老师的“西瓜书”我也有了解过,看了前几章,个人感觉他肯能对初学者更友好一点,讲述的非常清楚,有很多描述性的内容。对比下来,更喜欢《统计学习方法》,毕竟能坚持看完才最重要。
  笔记内容: 笔记内容尽量省去了公式推导的部分,一方面latex编辑太费时间了,另一方面,我觉得公式一定要自己推到一边才有用(最好是手写)。尽量保留所有标题,但内容会有删减,通过标黑和列表的形式突出重点内容,要特意说一下,标灰的部分大家最好读一下(这部分是我觉得比较繁琐,但又不想删掉的部分)。
  代码实现: 最后是本章内容的实践,如果想要对应的.ipynb文件,可以留言

第6章 逻辑斯谛回归与最大熵模型

   逻辑斯谛回归(logistic regression) 是统计学习中的经典分类方法。最大熵是概率模型学习的一个准则,将其推广到分类问题得到最大熵模型(maximum entropy model)。

  逻辑斯谛回归模型与最大熵模型都属于对数线性模型。

6.1 逻辑斯谛回归模型

6.1.1 逻辑斯谛分布

  首先介绍逻辑斯谛分布(logistic distribution)。
在这里插入图片描述
  逻辑斯谛分布的密度函数 f ( x ) f(x) f(x)分布函数 F ( x ) F(x) F(x)的图形如图6.1所示。分布函数属于逻辑斯谛函数,其图形是一条S形曲线(sigmoid curve)。该曲线以点 为中心对称,即满足:

在这里插入图片描述
  曲线在中心附近增长速度较快,在两端增长速度较慢。形状参数 γ γ γ的值越小,曲线在中心附近增长得越快。

6.1.2 二项逻辑斯谛回归模型

  二项逻辑斯谛回归模型(binomial logistic regression model)是一种分类模型,由条件概率分布 P ( Y ∣ X ) P(Y|X) P(YX)表示,形式为参数化的逻辑斯谛分布。

  这里,随机变量 X X X取值为实数,随机变量 Y Y Y取值为1或0。我们通过监督学习的方法来估计模型参数。
在这里插入图片描述
  对于给定的输入实例 x x x,按照式(6.3)和式(6.4)可以求得 P ( Y = 1 ∣ x ) P(Y=1|x) P(Y1∣x) P ( Y = 0 ∣ x ) P(Y=0|x) P(Y0∣x)

  逻辑斯谛回归比较两个条件概率值的大小,将实例 x x x分到概率值较大的那一类。
有时为了方便,将权值向量输入向量加以扩充,仍记作 w , x w,x wx,即

  • 权值向量: w = ( w ( 1 ) , w ( 2 ) , … , w ( n ) , b ) T w=(w^{(1)},w^{(2)}, …,w^{(n)},b)^T w(w(1),w(2),,w(n),b)T
  • 输入向量: x = ( x ( 1 ) , x ( 2 ) , … , x ( n ) , 1 ) T x=(x^{(1)},x^{(2)},…,x^{(n)},1)^T x(x(1),x(2),,x(n),1)T

  这时,逻辑斯谛回归模型如下:
在这里插入图片描述
  逻辑斯谛回归模型的特点。

  一个事件的几率(odds)是指该事件发生的概率与该事件不发生的概率的比值。

  如果事件发生的概率是p,那么该事件的几率是 p 1 − p \frac{p}{1-p} 1pp ,该事件的对数几率(log odds)或logit函数

l o g i t ( p ) = l o g p 1 − p logit(p)=log\frac{p}{1-p} logit(p)=log1pp

  对逻辑斯谛回归而言,由式(6.5)与式(6.6)得

l o g P ( Y = 1 ∣ x ) 1 − P ( Y = 1 ∣ x ) = w ⋅ x log\frac{P(Y=1|x)}{1-P(Y=1|x)} = w\cdot x log1P(Y=1∣x)P(Y=1∣x)=wx

  这就是说,在逻辑斯谛回归模型中,输出 Y = 1 Y=1 Y1的对数几率是输入 x x x的线性函数。(或者说,输出 Y = 1 Y=1 Y1的对数几率是由输入 x x x的线性函数表示的模型,即逻辑斯谛回归模型。)

  换一个角度看,考虑对输入 x x x进行分类的线性函数 w ⋅ x w·x wx,其值域为实数域。注意,这里 x ∊ R N + 1 x∊R^{N+1} xRN+1, w ∊ R N + 1 w∊R^{N+1} wRN+1。通过逻辑斯谛回归模型定义式(6.5)可以将线性函数 w ⋅ x w·x wx转换为概率:

P ( Y = 1 ∣ x ) = e x p ( w ⋅ x ) 1 + e x p ( w ⋅ x ) P(Y=1|x)=\frac{exp(w \cdot x)}{1+exp(w \cdot x)} P(Y=1∣x)=1+exp(wx)exp(wx)

  这时,

  • 线性函数的值越接近正无穷,概率值就越接近1;
  • 线性函数的值越接近负无穷,概率值就越接近0(如图6.1所示)。

  这样的模型就是逻辑斯谛回归模型。

6.1.3 模型参数估计

  逻辑斯谛回归模型学习时,对于给定的训练数据集 T = ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x N , y N ) T={(x_1,y_1),(x_2,y_2),…,(x_N,y_N)} T(x1y1),(x2y2),,(xN,yN),其中, x i ∊ R n x_i∊R^n xiRn y i ∊ 0 , 1 y_i∊{0,1} yi0,1,可以应用极大似然估计法估计模型参数,从而得到逻辑斯谛回归模型。

设:

P ( Y = 1 ∣ x ) = π ( x ) P(Y=1|x)=\pi(x) PY=1∣x=π(x)

P ( Y = 0 ∣ x ) = 1 − π ( x ) P(Y=0|x)=1-\pi(x) PY=0∣x=1π(x)

似然函数为:

∏ i = 0 N [ π ( x i ) ] y i [ 1 − π ( x i ) ] 1 − y i ] \prod \limits_{i=0}^N[\pi(x_i)]^{y_i}[1-\pi(x_i)]^{1-y_i}] i=0N[π(xi)]yi[1π(xi)]1yi]

对数似然函数为:

在这里插入图片描述
L ( w ) L(w) L(w)求极大值,得到 w w w的估计值。

  这样,问题就变成了以对数似然函数为目标函数的最优化问题。逻辑斯谛回归学习中通常采用的方法是梯度下降法拟牛顿法

  假设 w w w的极大似然估计值是 ,那么学到的逻辑斯谛回归模型为

P ( Y = 1 ∣ x ) = e x p ( w ^ ⋅ x ) 1 + e x p ( w ^ ⋅ x ) P(Y=1|x)=\frac{exp(\hat{w} \cdot x)}{1+exp(\hat{w} \cdot x)} P(Y=1∣x)=1+exp(w^x)exp(w^x)

P ( Y = 0 ∣ x ) = 1 1 + e x p ( w ^ ⋅ x ) P(Y=0|x)=\frac{1}{1+exp(\hat{w} \cdot x)} P(Y=0∣x)=1+exp(w^x)1

6.1.4 多项逻辑斯谛回归

  上面介绍的逻辑斯谛回归模型是二项分类模型,用于二类分类。

  可以将其推广为多项逻辑斯谛回归模型(multi-nominal logistic regression model),用于多类分类。

  假设离散型随机变量Y的取值集合是 1 , 2 , … , K {1,2,…,K} 1,2,,K,那么多项逻辑斯谛回归模型是
在这里插入图片描述
  二项逻辑斯谛回归的参数估计法也可以推广到多项逻辑斯谛回归。

这篇关于《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第6章 逻辑斯谛回归与最大熵模型(1)6.1 逻辑斯谛回归模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/674674

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G