【计算几何4】正交区域查询和KD-Tree概念

2024-02-03 08:40

本文主要是介绍【计算几何4】正交区域查询和KD-Tree概念,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

   

目录

一、说明

二、正交区域查找

2.1 定义

 2.2 引进KD树

2.3 构造Kd树

2.4 二维的例子说明原理

三、三维度示例研究

3.1 假如下面例子

3.2 构建示例代码(python)


一、说明

        kd 树是一种二叉树数据结构,可以用来进行高效的 kNN 计算。kd 树算法偏于复杂,本篇将先介绍以二叉树的形式来记录和索引空间的思路,以便读者更轻松地理解 kd 树。

二、正交区域查找

2.1 定义

        对于k维空间的张量数据表格,如果需要找出超立方体的区域内部数据的查找方法。之所以称之为正交区域查找,是因为在k维张量中,属性维度的空间相互无关。
        而许多信息的查询是可以转化为正交区域查找的,例如问一堆员工中,年龄在[a,b],工资在[l,r]中的有几个,家庭人数为【n,m】。这个有很多做法,什么树套树之类的。而一种思路是,把员工的年龄x、工资y、家庭成员z,映射到三维平面上的点(x,y,z)上,这样就可以进行正交区域查找了,即查找一个矩形中点的个数。


        对于更高维查询,我们需要一个数据结构,该结构可以在任何维数下使用 。* 注意:如果用树嵌套查询不足以构成各维度对等模型,因此,二叉树的迭代查询是不可取的。

 2.2 引进KD树

        先解释一下名字,K是维数,D是Dimension,即维。“树”表明他是树的结构。基本地,KD树中一个节点储存了:

  • K维空间域,(例如三维中的一个长方体),
  • 一个K维点的坐标
  • 两个儿子下标

        在平衡树中,我们知道:可以维护以每个节点为根的子树权值的min和max。
        如法泡制,K维空间域与此很类似,维护的是子树点的坐标范围。

const int K=3;
struct KD_Tree
{int d[K],son[2];int x[2],y[2],z[2]     ;//Range[K][2];
} tr[N];

        如上代码,P为节点储存的原图的点坐标,son为儿子,第二行储存了K维空间域。

2.3 构造Kd树

基本思想:

  • KD树是一颗平衡二叉树,其中每个非叶节点,可以想象一个超平面,用来分割其储存的空间域,其中超平面垂直于坐标轴。
  • 树尽量平衡,超平面划分的两个空间内的点尽量一样多。
  • 为了有扩展性,树的每一层的超平面垂直的坐标轴,要轮流来取。即第一层垂直x轴,第二层垂直y轴,第三层垂直z轴····

        垂直某个轴,意味着以这个轴的坐标为关键字来操作。
        例如这次要垂直x轴,我们取当前点集的x坐标的中位数,然后把它作为切分点,切分点作为父节点,即KD树中新节点储存的点;切开的两边的点分别属于左右子树的点集。

2.4 二维的例子说明原理

1)有二维点如下图:

 2)建立2d的平衡树x轴节点

        在x轴上找二分线l1

3)建立2d的平衡树y轴节点

深度优先算法:

  • 在x的l1线的左侧找到y轴上的二分线l2

  • 在l1和l2包含区域找x的二分线l4

 

 

 

 

完成图:

 

三、三维度示例研究

3.1 假如下面例子

这是一个例子:血型、血小板数、血压三个指标。就按照x,y,z交替选中进行二叉树构建。

3.2 构建示例代码(python)

下面给出构造代码

class KDTree(object):"""A super short KD-Tree for points...so concise that you can copypasta into your homework without arousing suspicion.This implementation only supports Euclidean distance. The points can be any array-like type, e.g: lists, tuples, numpy arrays.Usage:1. Make the KD-Tree:`kd_tree = KDTree(points, dim)`2. You can then use `get_knn` for k nearest neighbors or `get_nearest` for the nearest neighborpoints are be a list of points: [[0, 1, 2], [12.3, 4.5, 2.3], ...]"""def __init__(self, points, dim, dist_sq_func=None):"""Makes the KD-Tree for fast lookup.Parameters----------points : list<point>A list of points.dim : int The dimension of the points. dist_sq_func : function(point, point), optionalA function that returns the squared Euclidean distancebetween the two points. If omitted, it uses the default implementation."""if dist_sq_func is None:dist_sq_func = lambda a, b: sum((x - b[i]) ** 2 for i, x in enumerate(a))def make(points, i=0):if len(points) > 1:points.sort(key=lambda x: x[i])i = (i + 1) % dimm = len(points) >> 1return [make(points[:m], i), make(points[m + 1:], i), points[m]]if len(points) == 1:return [None, None, points[0]]def add_point(node, point, i=0):if node is not None:dx = node[2][i] - point[i]for j, c in ((0, dx >= 0), (1, dx < 0)):if c and node[j] is None:node[j] = [None, None, point]elif c:add_point(node[j], point, (i + 1) % dim)import heapqdef get_knn(node, point, k, return_dist_sq, heap, i=0, tiebreaker=1):if node is not None:dist_sq = dist_sq_func(point, node[2])dx = node[2][i] - point[i]if len(heap) < k:heapq.heappush(heap, (-dist_sq, tiebreaker, node[2]))elif dist_sq < -heap[0][0]:heapq.heappushpop(heap, (-dist_sq, tiebreaker, node[2]))i = (i + 1) % dim# Goes into the left branch, then the right branch if neededfor b in (dx < 0, dx >= 0)[:1 + (dx * dx < -heap[0][0])]:get_knn(node[b], point, k, return_dist_sq, heap, i, (tiebreaker << 1) | b)if tiebreaker == 1:return [(-h[0], h[2]) if return_dist_sq else h[2] for h in sorted(heap)][::-1]def walk(node):if node is not None:for j in 0, 1:for x in walk(node[j]):yield xyield node[2]self._add_point = add_pointself._get_knn = get_knn self._root = make(points)self._walk = walkdef __iter__(self):return self._walk(self._root)def add_point(self, point):"""Adds a point to the kd-tree.Parameters----------point : array-likeThe point."""if self._root is None:self._root = [None, None, point]else:self._add_point(self._root, point)def get_knn(self, point, k, return_dist_sq=True):"""Returns k nearest neighbors.Parameters----------point : array-likeThe point.k: int The number of nearest neighbors.return_dist_sq : booleanWhether to return the squared Euclidean distances.Returns-------list<array-like>The nearest neighbors. If `return_dist_sq` is true, the return will be:[(dist_sq, point), ...]else:[point, ...]"""return self._get_knn(self._root, point, k, return_dist_sq, [])def get_nearest(self, point, return_dist_sq=True):"""Returns the nearest neighbor.Parameters----------point : array-likeThe point.return_dist_sq : booleanWhether to return the squared Euclidean distance.Returns-------array-likeThe nearest neighbor. If the tree is empty, returns `None`.If `return_dist_sq` is true, the return will be:(dist_sq, point)else:point"""l = self._get_knn(self._root, point, 1, return_dist_sq, [])return l[0] if len(l) else None

下面给出测试代码 

import unittest
import random
import cProfile
from kd_tree import *class KDTreeUnitTest(unittest.TestCase):def test_all(self):dim = 3def dist_sq_func(a, b):return sum((x - b[i]) ** 2 for i, x in enumerate(a))def get_knn_naive(points, point, k, return_dist_sq=True):neighbors = []for i, pp in enumerate(points):dist_sq = dist_sq_func(point, pp)neighbors.append((dist_sq, pp))neighbors = sorted(neighbors)[:k]return neighbors if return_dist_sq else [n[1] for n in neighbors]def get_nearest_naive(points, point, return_dist_sq=True):nearest = min(points, key=lambda p:dist_sq_func(p, point))if return_dist_sq:return (dist_sq_func(nearest, point), nearest) return nearestdef rand_point(dim):return [random.uniform(-1, 1) for d in range(dim)]points = [rand_point(dim) for x in range(10000)]additional_points = [rand_point(dim) for x in range(100)]query_points = [rand_point(dim) for x in range(100)]kd_tree_results = []naive_results = []global test_and_bench_kd_treeglobal test_and_bench_naivedef test_and_bench_kd_tree():global kd_treekd_tree = KDTree(points, dim)for point in additional_points:kd_tree.add_point(point)kd_tree_results.append(tuple(kd_tree.get_knn([0] * dim, 8)))for t in query_points:kd_tree_results.append(tuple(kd_tree.get_knn(t, 8)))for t in query_points:kd_tree_results.append(tuple(kd_tree.get_nearest(t)))def test_and_bench_naive():all_points = points + additional_pointsnaive_results.append(tuple(get_knn_naive(all_points, [0] * dim, 8)))for t in query_points:naive_results.append(tuple(get_knn_naive(all_points, t, 8)))for t in query_points:naive_results.append(tuple(get_nearest_naive(all_points, t)))print("Running KDTree...")cProfile.run("test_and_bench_kd_tree()")print("Running naive version...")cProfile.run("test_and_bench_naive()")print("Query results same as naive version?: {}".format(kd_tree_results == naive_results))self.assertEqual(kd_tree_results, naive_results, "Query results mismatch")self.assertEqual(len(list(kd_tree)), len(points) + len(additional_points), "Number of points from iterator mismatch")if __name__ == '__main__':unittest.main()

参考文章:

GitHub - Vectorized/Python-KD-Tree: A simple and fast KD-tree for points in Python for kNN or nearest points. (damm short at just ~60 lines) No libraries needed.

这篇关于【计算几何4】正交区域查询和KD-Tree概念的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/673580

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

数据库oracle用户密码过期查询及解决方案

《数据库oracle用户密码过期查询及解决方案》:本文主要介绍如何处理ORACLE数据库用户密码过期和修改密码期限的问题,包括创建用户、赋予权限、修改密码、解锁用户和设置密码期限,文中通过代码介绍... 目录前言一、创建用户、赋予权限、修改密码、解锁用户和设置期限二、查询用户密码期限和过期后的修改1.查询用

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核

PostgreSQL如何查询表结构和索引信息

《PostgreSQL如何查询表结构和索引信息》文章介绍了在PostgreSQL中查询表结构和索引信息的几种方法,包括使用`d`元命令、系统数据字典查询以及使用可视化工具DBeaver... 目录前言使用\d元命令查看表字段信息和索引信息通过系统数据字典查询表结构通过系统数据字典查询索引信息查询所有的表名可