限幅滤波和一阶滞后滤波(基于ESR估计)

2024-02-03 08:32

本文主要是介绍限幅滤波和一阶滞后滤波(基于ESR估计),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

reference:
10种简单常用滤波方法
Github-Stefanbit1996

1. 问题背景 Backgrounds

此问题基于一种简单的动力电池SOH估计方法,即通过估计ESR(Equivalent-Series Resistance)来实现。估计ESR R 0 R_0 R0 是一个相对比较简单的问题,以为它对于端电压测量是比较敏感的,这可以通过下面的过程来证明。

2.敏感性验证 Sensitivity validation

根据Dr.Plett的课程中的等效电路模型
v k = O C V ( z k ) + V h y s t e r e s i s , k − ∑ i R i i R i , k − i k R 0 v_k=OCV(z_k)+V_{hysteresis,k}-\sum_iR_ii_{R_i,k}-i_kR_0 vk=OCV(zk)+Vhysteresis,kiRiiRi,kikR0
式中第一项为OCV,第二项为电压迟滞,第三项为极化电压,第四项为欧姆内阻上的电压。
设电压测量对内阻变化的敏感度可定义为
S v k R 0 = R 0 v k d v k d R 0 = − R 0 v k i k S_{v_k}^{R_0} = \frac{R_0}{v_k} \frac{dv_k}{dR_0}=\frac{-R_0}{v_k}i_k Sv

这篇关于限幅滤波和一阶滞后滤波(基于ESR估计)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/673551

相关文章

Open3D 基于法线的双边滤波

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 输入参数: 输出参数: 参数影响: 2.2完整代码 三、实现效果 3.1原始点云 3.2滤波后点云 Open3D点云算法汇总及实战案例汇总的目录地址: Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客 一、概述         基于法线的双边

6.4双边滤波

目录 实验原理 示例代码1 运行结果1 实验代码2 运行结果2 实验原理 双边滤波(Bilateral Filtering)是一种非线性滤波技术,用于图像处理中去除噪声,同时保留边缘和细节。这种滤波器结合了空间邻近性和像素值相似性的双重加权,从而能够在去噪(平滑图像)的同时保留图像的边缘细节。双边滤波器能够在的同时,保持边缘清晰,因此非常适合用于去除噪声和保持图像特征。在Op

数据集 3DPW-开源户外三维人体建模-姿态估计-人体关键点-人体mesh建模 >> DataBall

3DPW 3DPW-开源户外三维人体建模数据集-姿态估计-人体关键点-人体mesh建模 开源户外三维人体数据集 @inproceedings{vonMarcard2018, title = {Recovering Accurate 3D Human Pose in The Wild Using IMUs and a Moving Camera}, author = {von Marc

6.3中值滤波

目录 实验原理 示例代码1 运行结果1 示例代码2 运行结果2 实验原理 中值滤波(Median Filtering)是一种非线性滤波技术,常用于图像处理中去除噪声,特别是在保留边缘的同时减少椒盐噪声(salt-and-pepper noise)。OpenCV中的cv::medianBlur函数可以实现中值滤波。 函数原型 void medianBlur( InputAr

数据集 Ubody人体smplx三维建模mesh-姿态估计 >> DataBall

Ubody开源人体三维源数据集-smplx-三维建模-姿态估计 UBody:一个连接全身网格恢复和真实生活场景的上半身数据集,旨在拟合全身网格恢复任务与现实场景之间的差距。 UBody包含来自多人的现实场景的1051k张高质量图像,这些图像拥有2D全身关键点、3D SMPLX模型。 UBody由国际数字经济学院(IDEA)提供。 (UBody was used for mesh r

【控制算法 数据处理】一阶滤波算法

简单介绍: 一阶滤波算法是比较常用的滤波算法,它的滤波结果=a*本次采样值+(1-a)*上次滤波结果,其中,a为0~1之间的数。一阶滤波相当于是将新的采样值与上次的滤波结果计算一个加权平均值。a的取值决定了算法的灵敏度,a越大,新采集的值占的权重越大,算法越灵敏,但平顺性差;相反,a越小,新采集的值占的权重越小,灵敏度差,但平顺性好。优点是对周期干扰有良好的抑制作用,适用于波动频率比较高的场合,它

RSSI滤波方法

文章目录 一、均值滤波二、递推平均滤波三、中位值滤波四、狄克逊检验法滤波五、高斯滤波六、速度滤波七、卡尔曼滤波 一、均值滤波 均值滤波是指节点接收到另一节点的多个RSSI值之后,求其算式平均值,作为测试结果 R S S I ‾ = 1 n ∙ ∑ i = 1 n R S S I i \overline{RSSI} = \frac {1}{n} \bullet \sum_{i=1

CUDAPCL ROR点云滤波

文章目录 一、简介二、实现代码三、实现效果参考资料 一、简介 该方法的具体原理为输入的点云中每一个点设定一个范围(半径为r的圆),如果在该范围内没有达到某一个设定的点数值,则该数据点将会被删除,重复上述此过程直到最后一个数据点,即完成该滤波过程。 二、实现代码 ROR.cuh #ifndef ROR_GPU_CUH#define ROR_GPU_CU

matlab频域滤波

步骤: (1)计算原图像f(x,y)的DFT, (2) 讲频谱的零频点移动到频谱图的中心位置; (3)计算滤波器函数H(U,V)与F(U,V)的乘积G(U,V); (4)讲频谱G(U,V)的零频点移回到频谱图的坐上角。 (5)计算(4)的结果的傅立叶反变换g(x,y); (6)取g(x,y)的实部作为最终的滤波后的结果图像。   代码: 大家别激动的啦   代

工控常用滤波方法(限幅+中值+算术平均+滑动平均)

工控常用滤波方法 简介限幅滤波法中值滤波法算术平均滤波法滑动平均滤波 简介 在实际的工程应用中,实际反馈的信号由于是通过电压及电流转换而来的数字量信号,在现场可能会受到比较大的干扰问题,这样的扰动会影响控制系统的输出精度,也会使其产生比较大的偏差。 故在实际应用中,通常不会直接将反馈的信号作为信号输入,会在之前加一个滤波器以使数据更平滑,在此,非常有必要引入数字滤波的概念。