[深度应用]·实战掌握Dlib人脸识别开发教程

2024-02-02 11:48

本文主要是介绍[深度应用]·实战掌握Dlib人脸识别开发教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[深度应用]·实战掌握Dlib人脸识别开发教程

个人网站--> http://www.yansongsong.cn/

项目GitHub地址--> https://github.com/xiaosongshine/dlib_face_recognition

1.背景介绍

Dlib是一个深度学习开源工具,基于C++开发,也支持Python开发接口,功能类似于TensorFlow与PyTorch。但是由于Dlib对于人脸特征提取支持很好,有很多训练好的人脸特征提取模型供开发者使用,所以Dlib人脸识别开发很适合做人脸项目开发。

上面所说的人脸识别开发,主要是指人脸验证,就是输入两张人脸照片,系统会对比输出0或者1,代表判断是否是同一个人。一般的人脸识别开发可以简单分为1.人脸特征建模2.使用人脸特征模型进行验证(其实还应包括人脸对齐等,这些也可以划分到1中)。使用Dlib进行开发时,我们直接可以使用训练好的人脸特征提取模型,主要的工作就变成了如何进行人脸的验证。

人脸的验证其实就是计算相似度,同一个人的相似度就会大,不同的人就会比较小。可以采用余弦相似度或者欧式距离来计算相似度。其中余弦相似度就是计算角度,欧式距离就是指平方差。都可以用来表示两个特征的相似度(距离)。

2.环境搭建

安装可以参考我的这篇博客:[深度学习工具]·极简安装Dlib人脸识别库,下面说一下需要注意的点::

此博文针对Windows10安装,其他平台可以仿照这个步骤来安装

  • 安装Miniconda

使用conda指令来安装Dlib库,使用Miniconda与Anaconda都可以,我习惯用Miniconda,简单占用内存小。
推荐使用清华源,下载安装,选择合适的平台版本。python==3.6

  • 安装dlib
    注意一定要以管理员身份进入CMD,执行(如果是Linux Mac 就使用 sudo)
conda install -c conda-forge dlib

 

  • 需要imageio 库,可以使用下述命令安装
conda install imageio

 

3.开发实战

 

1.实现人脸检测标记

face_test.py

import dlib
from imageio import imread
import globdetector = dlib.get_frontal_face_detector()
win = dlib.image_window()path = "f1.jpg"
img = imread(path)
dets = detector(img)
print('检测到了 %d 个人脸' % len(dets))
for i, d in enumerate(dets):print('- %d:Left %d Top %d Right %d Bottom %d' % (i, d.left(), d.top(), d.right(), d.bottom()))win.clear_overlay()
win.set_image(img)
win.add_overlay(dets)
dlib.hit_enter_to_continue()

 

代码很简单,通过imread读取照片,然后进行检测,输出结果为dets的list,有几张人脸就会有几个item, 每个item都有.left(), .top(), .right(), .bottom()四个元素,代表人脸框的四个边界位置。最后通过win.add_overlay(dets)可以将标记的框显示在原图上。

原始照片


输出照片

其实我们就可以使用这个功能做一个简单的应用,用来检测图片或者视频中人脸的个数。

2.人脸特征点提取

在实战1的基础上添加人脸特征提取功能。

import dlib
from imageio import imread
import globdetector = dlib.get_frontal_face_detector()
win = dlib.image_window()predictor_path = 'shape_predictor_68_face_landmarks.dat'
predictor = dlib.shape_predictor(predictor_path)path = "f2.jpg"
img = imread(path)
dets = detector(img)
print('检测到了 %d 个人脸' % len(dets))for i, d in enumerate(dets):print('- %d: Left %d Top %d Right %d Bottom %d' % (i, d.left(), d.top(), d.right(), d.bottom()))shape = predictor(img, d)# 第 0 个点和第 1 个点的坐标print('Part 0: {}, Part 1: {}'.format(shape.part(0), shape.part(1)))
win.clear_overlay()
win.set_image(img)
win.add_overlay(dets)
win.add_overlay(shape)
dlib.hit_enter_to_continue()

 

这段代码就是在test.py基础上加入了shape_predictor功能,使之可以在检测出人脸基础上,找到人脸的68个特征点。反映在图中就是蓝色的线。

 

原始图片

 

输出图片

 

注意运行这段代码需要这个文件predictor_path = 'shape_predictor_68_face_landmarks.dat',我会放在我的github中,方便大家下载使用。

3.人脸识别验证

在第二步的基础上,我们再进一步,实现将人脸提取为特征向量,从而我们就可以对特征向量进行比对来实现人脸的验证,这里采用的是对比欧式距离的方法。

face_recognition.py

import dlib
from imageio import imread
import glob
import numpy as npdetector = dlib.get_frontal_face_detector()
predictor_path = 'shape_predictor_68_face_landmarks.dat'
predictor = dlib.shape_predictor(predictor_path)
face_rec_model_path = 'dlib_face_recognition_resnet_model_v1.dat'
facerec = dlib.face_recognition_model_v1(face_rec_model_path)def get_feature(path):img = imread(path)dets = detector(img)print('检测到了 %d 个人脸' % len(dets))# 这里假设每张图只有一个人脸shape = predictor(img, dets[0])face_vector = facerec.compute_face_descriptor(img, shape)return(face_vector)def distance(a,b):a,b = np.array(a), np.array(b)sub = np.sum((a-b)**2)add = (np.sum(a**2)+np.sum(b**2))/2.return sub/addpath_lists1 = ["f1.jpg","f2.jpg"]
path_lists2 = ["赵丽颖照片.jpg","赵丽颖测试.jpg"]feature_lists1 = [get_feature(path) for path in path_lists1]
feature_lists2 = [get_feature(path) for path in path_lists2]print("feature 1 shape",feature_lists1[0].shape)out1 = distance(feature_lists1[0],feature_lists1[1])
out2 = distance(feature_lists2[0],feature_lists2[1])print("diff distance is",out1)
print("same distance is",out2)out1 = distance(feature_lists1[0],feature_lists1[1])
out2 = distance(feature_lists2[0],feature_lists2[1])

 

输出结果

检测到了 1 个人脸
检测到了 1 个人脸
检测到了 1 个人脸
检测到了 1 个人脸feature 1 shape (128, 1)diff distance is 0.254767715912
same distance is 0.0620976363391

 

我们可以看出,每张人脸都被提取为了128维的向量,我们可以理解为128维的坐标(xyz是三维,128维就是有128个轴组成),我们下面需要做的就是计算两个特征的距离,设定好合适的阈值,小于这个阈值则识别为同一个人。代码正确运行需要这个文件face_rec_model_path = 'dlib_face_recognition_resnet_model_v1.dat',我已经放在自己的github中,方便大家使用。

我们从上面测试的结果可以看出,不同的距离为0.25,同一个人为0.06,阈值就可以先设置为其间的一个值。我这里先设置为0.09,这个阈值也是需要大量数据来计算的,选择的准则为使错误识别为最低。

下面我们把阈值设置为0.09,来测试系统能否区分出不同的人:在face_recognition.py加入下面代码

def classifier(a,b,t = 0.09):if(distance(a,b)<=t):ret = Trueelse :ret = Falsereturn(ret)print("f1 is 赵丽颖",classifier(feature_lists1[0],feature_lists2[1]))
print("f2 is 赵丽颖",classifier(feature_lists1[1],feature_lists2[1]))
print("赵丽颖照片.jpg is 赵丽颖测试.jpg",classifier(feature_lists2[0],feature_lists2[1]))

 

输出结果

f1 is 赵丽颖 False 
f2 is 赵丽颖 False 
赵丽颖照片.jpg is 赵丽颖测试.jpg True

 

从上面可以看出,已基本满足对人脸区分的功能,如果如要实用化则需要继续调优阈值与代码,调优的准则就是选择合适的阈值使错误识别为最低。

Hope this helps

个人网站--> http://www.yansongsong.cn/

这篇关于[深度应用]·实战掌握Dlib人脸识别开发教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/670607

相关文章

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2