动态规划3:最大子段和问题到最大子矩阵问题(三):初探最大子矩阵之和问题

2024-02-01 05:48

本文主要是介绍动态规划3:最大子段和问题到最大子矩阵问题(三):初探最大子矩阵之和问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题描述:

给定一个由整数组成二维矩阵(r*c),现在需要找出它的一个子矩阵,使得这个子矩阵内的所有元素之和最大,并把这个子矩阵称为最大子矩阵。
例子:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
其最大子矩阵为:

9 2
-4 1
-1 8
其元素总和为15。

假设最大子矩阵的结果为从第r行到k行、从第i列到j列的子矩阵,如下所示(ari表示a[r][i],假设数组下标从1开始):
  | a11 …… a1i ……a1j ……a1n |
  | a21 …… a2i ……a2j ……a2n |
  |  .     .     .    .    .     .    .   |
  |  .     .     .    .    .     .    .   |
  | ar1 …… ari ……arj ……arn |
  |  .     .     .    .    .     .    .   |
  |  .     .     .    .    .     .    .   |
  | ak1 …… aki ……akj ……akn |
  |  .     .     .    .    .     .    .   |
  | an1 …… ani ……anj ……ann |

 那么我们将从第r行到第k行的每一行中相同列的加起来,可以得到一个一维数组如下:
 (ar1+……+ak1, ar2+……+ak2, ……,arn+……+akn)
 由此我们可以看出最后所求的就是此一维数组的最大子断和问题,到此我们已经将问题转化为上面的已经解决了的问题了。

1、如果没有最大子段和问题的基础,最直接的办法, 穷举法,对二维矩阵中所有子矩阵进行计算求得最大值,时间复杂度为(O(n^2*n^2));

2、基于最大子段和问题,算出任意n行的和数组,转变成最大字段和进行处理,对于任意n行,如果采用各个处理的话,其时间复杂度相对较高,所以对和数组的处理是本题的又一关键;

3、压缩矩阵

下面举一个简单的例子。在一个一维的数列中,要想求从第i个元素到第j个元素的和,我们可以用这样的方法:设数组sum[i]表示从第1个到第i个元素的和,则:求从第i个元素到第j个元素的和,只需用sum[j]-sum[i]就足够了。由此推广到二维矩阵,设sum[i,j]表示矩阵第j列前i个元素的和,cost[i,j]表示原始数据,则:

压缩数据程序代码为:

for i:=1 to n do

  for j:=1 to m do

    sum[i,j]:=sum[i-1,j]+cost[i,j];

下一个问题是,如何将数据从压缩的数组中读出。

读取数据代码为:

for i:=0 to n-1 do

  for j:=i+1 to n do

for k:=1 to n do temp[k]:=sum[j,k]-sum[i,k];

到此,最大子矩阵问题就完全转换为连续最大和问题。

#include<stdio.h>  
#include<string.h>  
#define MAXN 105  
int main()  
{  freopen("C:\\in.txt","r",stdin);  int dp[MAXN][MAXN];  int n,t;while (~scanf("%d",&n))  {  memset(dp,0,sizeof(dp));  for (int i=1;i<=n;++i)  {  for (int j=1;j<=n;++j)  {  scanf("%d",&t);  dp[i][j]=dp[i-1][j]+t;  }  }  int max=0;  for (int i=1;i<=n;++i)  {  for (int j=i;j<=n;++j)  {  int sum=0;  for (int k=1;k<=n;++k)  {  sum+=dp[j][k]-dp[i-1][k];   if (sum<0) sum=0;  if (sum>max) max=sum;  }  }  }  printf("%d\n",max);  }  return 0;  
}  

这篇关于动态规划3:最大子段和问题到最大子矩阵问题(三):初探最大子矩阵之和问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/666248

相关文章

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图