动态规划1:最大子段和问题到最大子矩阵问题(一):最大子段和问题详谈

2024-02-01 05:48

本文主要是介绍动态规划1:最大子段和问题到最大子矩阵问题(一):最大子段和问题详谈,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题描述:

给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。

例如:

对于6 -1 5 4 -7,最长子段和为14,是6+(-1)+5+4

最直接的方法:穷举法:对数组的每一个i到j和都求出来,求出最大值,算法很好想

int result=0;
for(int i=0;i<n;i++){for(int j=i;j<n;j++){int sum=0;for(int k=i;k<=j;k++)sum+=a[k];result=max(result,sum);}
}
return result;
可以看出,此方法时间复杂度为O(n^3)

然后我们试着对其进行优化,发现,代码中每次都对i到j进行求和,我们可以先将结果保存起来,当然可以这么定义,定义一二维数组sum[i][j],表示i到j的和,但是i到j的和其实也就是0到j的和再减去0到i的和,只要用一个一维数组sum[i]表示0到i的和,然后用sum[j]-sum[i-1](因为还要包括i,所以要i-1)就是i到j的和了,所以经过改进的算法如下:

int result=0;
int sum[n];
sum[0]=a[0];
for(int i=1;i<n;i++)sum[i]=sum[i-1]+a[i];
for(int i=0;i<n;i++){for(int j=i;j<n;j++){result=max(result,sum[j]-sum[i-1]);}
}
return result;

在这里注意处理好0位置就好了,时间复杂度为O(n^2)

接着,我们想想用分治的思想来解决此题:

我们不妨从小规模数据分析,当序列只有一个元素的时候,最大的和只有一个个可能,就是选取本身;

当序列有两个元素的时候,只有三种可能,选取左边元素、选取右边元素、两个都选,这三个可能中选取一个最大的就是当前情况的最优解;

对于多个元素的时候,最大的和也有三个情况,从左区间中产生、从右区间产生、左右区间各选取一段。因此不难看出,这个算法是基于分治思想的,每次二分序列,直到序列只有一个元素或者两个元素。当只有一个元素的时候就返回自身的值,有两个的时候返回3个中最大的,有多个元素的时候返回左、右、中间的最大值。因为是基于二分的思想,所以时间效率能达到O(nlgn)。

int divide(int a[],int left,int right)
{if(left==right)return v[left];int mid=(left+right)/2;int lsum=divide(a,left,mid);int rsum=divide(a,mid+1,right);int lmax=INT_MIN;int sum=0;for (int k=mid;k>=left;k--){//从mid向前找一个最大的连续子段sum+=a[k];lmax=max(lmax,sum);}sum=0;int rmax=INT_MIN;for (int k=mid+1;k<=right;k++){//从mid向后找一个最大的连续子段sum+=a[k];rmax=max(rmax,sum);}sum=s1+s2;return max(sum,max(lsum,rsum));//返回三个中的最大值
}

最后我们采取动态规划的方法来解决此题,

动态规划有两种思路:

1、dp[i]表示0~i(包括i)的最长子序列和,有

dp[i]=max(A[i],dp[i-1]+A[i]),则result=max{dp[t]}

因为dp[i]与dp[i-1]的关系,可以直接使用一个变量代替数组,然后从dp[0]到dp[n]选出最大的那个就是答案了,时间复杂度降为了O(n)。

int DP(int a[],int n){int dp=0,maxSum=INT_MIN;for(int i=0;i<n;i++){dp=dp>0?dp+a[i]:a[i];maxSum=max(maxSum,dp); } return maxSum; 
}

当然,从后向前也一样

int DP(int A[], int n) {int dp=0,maxSum=INT_MIN;  for(int i=n-1;i>=0;i--)  {  dp=dp>0?dp+A[i]:A[i];  maxSum=max(maxSum,dp);   }   return maxSum; }


2、dp[i]表示0~i(不一定包括i)的最长子序列和,有

设sum[i]表示A0~Ai的和

dp[i]=max{dp[i-1],sum[i]-min{sum[t]}}  0<=t<i

class Solution {  
public:  int maxSubArray(int A[], int n) {  int dp=INT_MIN;  int minV=INT_MAX;  int sum=0;  for(int i=0;i<n;i++){  minV=min(minV,sum);  sum+=A[i];  dp=max(dp,sum-minV);  }  return dp;  }  
};  

2(续)dp[i]表示i到n(不一定包括i)的最长子序列和,有

设sum[i]表示A0~Ai的和

dp[i]=max{dp[i+1],max{sum[t]}-sum[i-1]}    i<=t<=n

因为从后向前遍历,所以sum数组必须事先生成


class Solution {
public:int maxSubArray(int A[], int n) {int sum[n];for(int i=0;i<n;i++)sum[i]=i==0?A[i]:sum[i-1]+A[i];int dp=INT_MIN;int maxV=INT_MIN;for(int i=n-1;i>=0;i--){maxV=max(maxV,sum[i]);dp=max(dp,maxV-(i==0?0:sum[i-1]));}return dp;}
};

拓展问题:

1、最长2子段和问题,从序列中找到两组子序列,使得和最大

思路:

先找到0到i的最长子序列和dp1[i],再找到i到n的最长子序列和dp2[i],

则max=max{max,dp1[i]+dp2[i]}

参见:LeetCode OJ:Best Time to Buy and Sell Stock III

注:注意i是否可以重复,即序列1的最后位置和序列2的首位置是否可以重复,此LeetCode题中是可以重复的

2、最大连续乘积子串

参见:第二十八章:最大连续乘积子串



这篇关于动态规划1:最大子段和问题到最大子矩阵问题(一):最大子段和问题详谈的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/666247

相关文章

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如