动态规划2:最大子段和问题到最大子矩阵问题(二):最大n子段和问题详谈

2024-02-01 05:38

本文主要是介绍动态规划2:最大子段和问题到最大子矩阵问题(二):最大n子段和问题详谈,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题描述:最长n子段和问题

有了最大子段和问题的基础,将一维数据变成二维数据

dp[i][j]保存前j个元素(包括j)分成i段最长连续子序列和

则有dp[i][j]=max(dp[i][j-1]+num[j],max(dp[i-1][t]+num[j]))     i-1<=t<j

注意t的取值范围,

所以不经过优化的代码如下:

int DP(int a[],int m,int n)  
{  int dp[100][100];memset(dp,0,sizeof(dp));int maxL,maxV=INT_MIN;for(int i=1;i<=m;i++){for(int j=i;j<=n;j++){maxL=INT_MIN;for(int t=i-1;t<j;t++){maxL=max(maxL,dp[i-1][t]);}dp[i][j]=max(dp[i][j-1],maxL)+a[j];}}for(int i=1;i<=n;i++)maxV=max(maxV,dp[m][i]);return maxV;   
}  

可以看到这个算法时间复杂度为O(n^3),空间复杂度为O(m*n),大数据范围时间和空间都不能满足


我们先对时间复杂度进行优化,注意到t每次都是从i-1到j-1位置遍历,重复工作做得太多,我们可以利用一数组pre[t]来保存从i-1位置到t位置的dp[i-1][t]最大值,供dp[i][j]来使用,使用完之后再将pre[t]赋值成从i位置到dp[i][t]位置的最大值,供后来的i+1使用,注意pre赋值的先后顺序

int DP(int a[],int m,int n)  
{  int dp[100][100];int pre[100];memset(dp,0,sizeof(dp));memset(pre,0,sizeof(pre));int maxL,maxV=INT_MIN;for(int i=1;i<=m;i++){maxL=INT_MIN;for(int j=i;j<=n;j++){dp[i][j]=max(dp[i][j-1],pre[j-1])+a[j];pre[j-1]=maxL;maxL=max(maxL,dp[i][j]);}}for(int i=1;i<=n;i++)maxV=max(maxV,dp[m][i]);return maxV;   
}  

从上面代码中可看出时间复杂度降为了O(n^2)


然后我们再对空间进行优化,这个规律就比较明显了

从这行代码可以看出

dp[i][j]=max(dp[i][j-1],pre[j-1])+a[j];
dp[i][j]只和dp[i][j-1]有关系,和dp[i][t]无关,所以我们没必要把dp[i][t]都存起来,用一维数组就行了

而且还注意到到i=m时,最后从for'循环出来的maxL值就是dp[m][t]的最大值,所以最后一行求maxV的代码就可以省了

最后精简的代码如下,(申请的空间是随意的,可以根据适时情况做出调整)

int DP(int a[],int m,int n)  
{  int dp[100];int pre[100];memset(dp,0,sizeof(dp));memset(pre,0,sizeof(pre));int maxL;for(int i=1;i<=m;i++){maxL=INT_MIN;for(int j=i;j<=n;j++){dp[j]=max(dp[j-1],pre[j-1])+a[j];pre[j-1]=maxL;maxL=max(maxL,dp[j]);}}return maxL;   
}  



这篇关于动态规划2:最大子段和问题到最大子矩阵问题(二):最大n子段和问题详谈的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/666236

相关文章

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

Vue项目中Element UI组件未注册的问题原因及解决方法

《Vue项目中ElementUI组件未注册的问题原因及解决方法》在Vue项目中使用ElementUI组件库时,开发者可能会遇到一些常见问题,例如组件未正确注册导致的警告或错误,本文将详细探讨这些问题... 目录引言一、问题背景1.1 错误信息分析1.2 问题原因二、解决方法2.1 全局引入 Element

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1