本文主要是介绍Java大数据学习07--Mapreduce--MapTask和ReduceTask并行度的决定机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
一、mapTask并行度的决定机制
1、maptask的并行度决定map阶段的任务处理并发度,它可以决定job的处理速度。但并不是MapTask并行实例越多越好,它是综合了很多因素来决定的。
2、一个job的map阶段并行度由客户端在提交job时决定,而客户端对map阶段并行度的规划的基本逻辑为:
将待处理数据执行逻辑切片(即按照一个特定切片大小,将待处理数据划分成逻辑上的多个split),然后每一个split分配一个mapTask并行实例处理。
3、那么是如何切片的呢?
切片由FileInputFormat实现类的getSplits()方法完成。主要有三种机制:
a)简单地按照文件的内容长度进行切片
b)切片大小,默认等于block大小
c)切片时不考虑数据集整体,而是逐个针对每一个文件单独切片
二、选择并发数的影响因素:
1、运算节点的硬件配置
2、运算任务的类型:CPU密集型还是IO密集型
3、运算任务的数据量
如果硬件配置为2*12core + 64G,恰当的map并行度是大约每个节点20-100个map,最好每个map的执行时间至少一分钟。
如果job的每个map或者 reduce task的运行时间都只有30-40秒钟,那么就减少该job的map或者reduce数,每一个task(map|reduce)的setup和加入到调度器中进行调度,这个中间的过程可能都要花费几秒钟,所以如果每个task都非常快就跑完了,就会在task的开始和结束的时候浪费太多的时间。
配置task的JVM重用[JVM重用技术不是指同一Job的两个或两个以上的task可以同时运行于同一JVM上,而是排队按顺序执行。](JVM重用技术不是指同一Job的两个或两个以上的task可以同时运行于同一JVM上,而是排队按顺序执行。)
可以改善该问题:
(mapred.job.reuse.jvm.num.tasks,默认是1,表示一个JVM上最多可以顺序执行的task数目(属于同一个Job)是1。也就是说一个task启一个JVM),如果input的文件非常的大,比如1TB,可以考虑将hdfs上的每个block size设大,比如设成256MB或者512MB
二、ReduceTask并行度的决定机制
ReduceTask的并行度同样影响整个job的执行并发度和执行效率,但与MapTask的并发数由切片数决定不同,ReduceTask数量的决定是可以直接手动设置。
在属性中有一个值表示:job.setNumReduceTasks(3);//默认值是1,手动设置为3
注意: reducetask数量并不是任意设置,还要考虑业务逻辑需求,有些情况下,需要计算全局汇总结果,就只能有1个reducetask
尽量不要运行太多的reduce task。对大多数job来说,最好rduce的个数最多和集群中的reduce持平,或者比集群的 reduce slots小。这个对于小集群而言,尤其重要。
喜欢的朋友点点关注哦~~
这篇关于Java大数据学习07--Mapreduce--MapTask和ReduceTask并行度的决定机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!