【JPCS出版,EI、Scopus稳定收录|往届已见刊检索成功!】第三届计算建模、仿真与数据分析国际学术会议(CMSDA 2023)

本文主要是介绍【JPCS出版,EI、Scopus稳定收录|往届已见刊检索成功!】第三届计算建模、仿真与数据分析国际学术会议(CMSDA 2023),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第三届计算建模、仿真与数据分析国际学术会议(CMSDA 2023)将于2023年12月22-24日即将在中国海南省三亚市召开。首届计算建模、仿真与数据分析国际学术会议已于2021、2022年连续成功举办,吸引了近200名计算机与大数据等领域的专家学者参会,多所国内外高等院校、科研院所、企事业单位团体参会。在即将举行的第三届会议上,我们邀请到学术领域的知名教授将与参会者分享在计算建模、数据挖掘与分析等领域的最新创新和研究成果。会议将主要以知名专家的主题演讲和作者的同行评审的论文报告为特色。

大会官网:https://ais.cn/u/F3IvQr(更多会议详情)

大会时间:2023年12月22日-24日

大会地点:中国·三亚

截稿时间:以官网信息为准【投稿优惠、投稿事项、优先审核click】

收录检索:EI、Scopus【往届已见刊检索成功!】

征稿主题

一、计算建模与仿真

建模工具与语言

建模与仿真方法

视觉与可视化技术

可视化和建模中的感知问题

模拟与建模中的数学与数值方法

仿真算法

计算机游戏与模拟

设备仿真与建模

人工智能仿真技术

机器人系统仿真

医疗仿真

.......

二、数据分析及应用

数据挖掘

数据管理与数据库

数据分析方法

智能数据处理

探索性数据分析

验证性数据分析

定性数据分析

高频数据分析

复杂数据分析

公共大数据

大数据分析与媒体

交通大数据

大数据的行业应用

......

三、其他相关主题(click)

出版信息

345210610113725173.png

图片13.png

所有的投稿都必须经过2-3位组委会专家审稿,经过严格的审稿之后,最终所有录用的论文将由Journal of Physics: Conference Series (ISSN: 1742-6588) 出版,见刊后提交至EI Compendex, Scopus检索。

*EI会议论文不得少于4页。【论文模板】

参会方式 

1、作者参会:一篇录用文章允许一名作者免费参会;

2、主讲嘉宾:申请主题演讲,由组委会审核;

3、口头演讲:申请口头报告,时间为15分钟;

4、海报展示:申请海报展示,A1尺寸;

5、听众参会:不投稿仅参会,也可申请演讲及展示。

*会议论文、口头报告、海报展示、听众参会【click】

这篇关于【JPCS出版,EI、Scopus稳定收录|往届已见刊检索成功!】第三届计算建模、仿真与数据分析国际学术会议(CMSDA 2023)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/663728

相关文章

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <

XTU 1237 计算几何

题面: Magic Triangle Problem Description: Huangriq is a respectful acmer in ACM team of XTU because he brought the best place in regional contest in history of XTU. Huangriq works in a big compa

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

跨系统环境下LabVIEW程序稳定运行

在LabVIEW开发中,不同电脑的配置和操作系统(如Win11与Win7)可能对程序的稳定运行产生影响。为了确保程序在不同平台上都能正常且稳定运行,需要从兼容性、驱动、以及性能优化等多个方面入手。本文将详细介绍如何在不同系统环境下,使LabVIEW开发的程序保持稳定运行的有效策略。 LabVIEW版本兼容性 LabVIEW各版本对不同操作系统的支持存在差异。因此,在开发程序时,尽量使用

CSP 2023 提高级第一轮 CSP-S 2023初试题 完善程序第二题解析 未完

一、题目阅读 (最大值之和)给定整数序列 a0,⋯,an−1,求该序列所有非空连续子序列的最大值之和。上述参数满足 1≤n≤105 和 1≤ai≤108。 一个序列的非空连续子序列可以用两个下标 ll 和 rr(其中0≤l≤r<n0≤l≤r<n)表示,对应的序列为 al,al+1,⋯,ar​。两个非空连续子序列不同,当且仅当下标不同。 例如,当原序列为 [1,2,1,2] 时,要计算子序列 [

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2