SAC(Soft Actor-Critic)理论与代码解释

2024-01-30 21:04

本文主要是介绍SAC(Soft Actor-Critic)理论与代码解释,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

标题

  • 理论
    • 序言基础
      • Q值与V值
      • 算法区别
  • SAC
      • 概念
      • Q函数与V函数
      • 最大化熵强化学习(Maximum Entropy Reinforcement Learning, MERL)
      • 算法流程
        • 1个actor,4个Q Critic
        • 1个actor,2个V Critic,2个Q Critic
  • 代码详解

参考连接:SAC(Soft Actor-Critic)阅读笔记 - Feliks的文章 - 知乎

理论

序言基础

Q值与V值

在强化学习中,Critic网络可以采用Q值(动作值函数)或V值(状态值函数),具体选择取决于你使用的算法以及问题的特性。

  1. Q值(动作值函数): Critic网络输出每个状态动作对的Q值,表示在给定状态下采取某个动作的预期累积奖励。这种方法通常用于Q-learning和Deep Q Network(DQN)等算法中,其中主要关注最优动作的选择。

  2. V值(状态值函数): Critic网络输出每个状态的V值,表示在给定状态下的预期累积奖励。这种方法通常用于值迭代方法,如异策略(Off-policy)的蒙特卡洛控制和异策略时序差分学习。 V(s) 表示智能体在状态 s 下,从该状态开始直到未来所能获得的累积奖励的期望值。换句话说,它是智能体处于状态 s 时,遵循某种策略所带来的长期回报的估计。

选择Q值还是V值通常取决于你解决的问题。如果你关心在每个状态下选择最优动作,那么使用Q值更为合适。如果你更关心每个状态的价值,而不仅仅是最优动作的话,那么使用V值可能更合适。 Q ( s , a ) Q(s, a) Q(s,a) 表示智能体在状态 s 下执行动作 a 后,紧接着直到未来的累积奖励的期望值。与 V 值相比,Q 值不仅考虑了状态,还考虑了特定的动作选择。

在一些算法中,如深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG),使用的是一个Critic网络同时输出Q值和Actor网络的参数。这种情况下,Critic网络的输出可以同时用于评估状态动作对的Q值和评估状态的V值。

算法区别

D4PG(引入分布式的critic,并使用多个actor(learner)共同与环境交互)

TD3(参考了double Q-learning的思想来优化critic,延缓actor的更新,计算critic的优化目标时在action上加一个小扰动)

PPO:依赖于importance sampling实现的off-policy算法在面对太大的策略差异时将无能为力(正在训练的policy与实际与环境交互时的policy差异过大),所以学者们认为PPO其实是一种on-policy的算法,这类算法在训练时需要保证生成训练数据的policy与当前训练的policy一致,对于过往policy生成的数据难以再利用,所以在sample efficiency这条衡量强化学习(Reinforcement Learning, RL)算法的重要标准上难以取得优秀的表现。

SAC

概念

SAC是基于最大熵(maximum entropy)这一思想发展的RL算法,其采用与PPO类似的随机分布式策略函数(Stochastic Policy),并且是一个off-policy,actor-critic算法
在这里插入图片描述
将熵引入RL算法的好处为,可以让策略(policy)尽可能随机,agent可以更充分地探索状态空间,避免策略早早地落入局部最优点(local optimum),并且可以探索到多个可行方案来完成指定任务,提高抗干扰能力。

Q函数与V函数

在这里插入图片描述

最大化熵强化学习(Maximum Entropy Reinforcement Learning, MERL)

MERL采用了独特的策略模型。为了适应更复杂的任务,MERL中的策略不再是以往的高斯分布形式,而是用基于能量的模型(energy-based model)来表示策略:
在这里插入图片描述

算法流程

算法同样包括策略评估(Policy Evaluation),与策略优化(Policy Improvement),在这两个步骤交替运行下,值函数与策略都可以不断逼近最优。
在这里插入图片描述

1个actor,4个Q Critic

SAC的论文有两篇,一篇是《Soft Actor-Critic Algorithms and Applications》,2018年12月挂arXiv,其中SAC算法流程如下所示,它包括1个actor网络,4个Q Critic网络:(代码使用的是这个:Github链接)
在这里插入图片描述

1个actor,2个V Critic,2个Q Critic

一篇是《Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor》,2018年1月挂arXiv,其中SAC算法流程如下所示,它包括1个actor网络,2个V Critic网络(1个V Critic网络,1个Target V Critic网络),2个Q Critic网络:
参考知乎
在这里插入图片描述
在这里插入图片描述

代码详解

Actor网络

class Actor(nn.Module):def __init__(self, state_dim, action_dim, hidden_width, max_action):super(Actor, self).__init__()self.max_action = max_actionself.l1 = nn.Linear(state_dim, hidden_width)self.l2 = nn.Linear(hidden_width, hidden_width)self.mean_layer = nn.Linear(hidden_width, action_dim)self.log_std_layer = nn.Linear(hidden_width, action_dim)def forward(self, x, deterministic=False, with_logprob=True):x = F.relu(self.l1(x))x = F.relu(self.l2(x))mean = self.mean_layer(x)log_std = self.log_std_layer(x)  # We output the log_std to ensure that std=exp(log_std)>0log_std = torch.clamp(log_std, -20, 2)std = torch.exp(log_std)dist = Normal(mean, std)  # Generate a Gaussian distributionif deterministic:  # When evaluating,we use the deterministic policya = meanelse:a = dist.rsample()  # reparameterization trick: mean+std*N(0,1)if with_logprob:  # The method refers to Open AI Spinning up, which is more stable.log_pi = dist.log_prob(a).sum(dim=1, keepdim=True)log_pi -= (2 * (np.log(2) - a - F.softplus(-2 * a))).sum(dim=1, keepdim=True)else:log_pi = Nonea = self.max_action * torch.tanh(a)  # Use tanh to compress the unbounded Gaussian distribution into a bounded action interval.return a, log_pi

理论中的训练策略 π( ϕ \phi ϕ) 时的损失函数:

在这里插入图片描述
对应代码的:

        # Compute actor lossa, log_pi = self.actor(batch_s)Q1, Q2 = self.critic(batch_s, a)Q = torch.min(Q1, Q2)actor_loss = (self.alpha * log_pi - Q).mean()   ##这里就是关键了撒

Q函数训练时的损失函数:

在这里插入图片描述
对应代码:

        with torch.no_grad():batch_a_, log_pi_ = self.actor(batch_s_)  # a' from the current policy# Compute target Qtarget_Q1, target_Q2 = self.critic_target(batch_s_, batch_a_)target_Q = batch_r + self.GAMMA * (1 - batch_dw) * (torch.min(target_Q1, target_Q2) - self.alpha * log_pi_)# Compute current Qcurrent_Q1, current_Q2 = self.critic(batch_s, batch_a)# Compute critic losscritic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(current_Q2, target_Q)

温度系数的更新

在这里插入图片描述
H 0 \mathcal{H_0} H0 是预先定义好的最小策略熵的阈值。

        # Update alphaif self.adaptive_alpha:# We learn log_alpha instead of alpha to ensure that alpha=exp(log_alpha)>0alpha_loss = -(self.log_alpha.exp() * (log_pi + self.target_entropy).detach()).mean()self.alpha_optimizer.zero_grad()alpha_loss.backward()self.alpha_optimizer.step()self.alpha = self.log_alpha.exp()

这篇关于SAC(Soft Actor-Critic)理论与代码解释的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/661553

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

CSS自定义浏览器滚动条样式完整代码

《CSS自定义浏览器滚动条样式完整代码》:本文主要介绍了如何使用CSS自定义浏览器滚动条的样式,包括隐藏滚动条的角落、设置滚动条的基本样式、轨道样式和滑块样式,并提供了完整的CSS代码示例,通过这些技巧,你可以为你的网站添加个性化的滚动条样式,从而提升用户体验,详细内容请阅读本文,希望能对你有所帮助...

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT