粒子群算法求解港口泊位调度问题(MATLAB代码)

2024-01-30 11:52

本文主要是介绍粒子群算法求解港口泊位调度问题(MATLAB代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

粒子群算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,它通过模拟鸟群或鱼群的行为来寻找最优解。在泊位调度问题中,目标是最小化所有船只在港时间的总和,而PSO算法可以帮助我们找到一个较优的调度方案。

泊位调度问题是指在有限数量的泊位资源下,安排船只的到港和离港时间,以最小化船只在港等待的时间。该问题存在多个约束条件,如泊位容量、船只到港和离港时间窗口等。

PSO算法的核心思想是通过模拟粒子在解空间中的移动来搜索最优解。每个粒子代表一个解,并根据自身的历史最佳解和群体的历史最佳解进行调整。粒子根据自身和邻域最优解的信息更新速度和位置,以逐渐靠近最优解。

在泊位调度问题中,每个粒子的位置可以表示为一个泊位调度方案,其中每个船只被分配到一个特定的泊位,并确定其到港和离港时间。粒子的速度和位置更新规则可以根据目标函数来定义,以使船只在港时间的总和最小化。

PSO算法的优点在于简单且易于实现,能够在高维解空间中找到较优解。然而,对于泊位调度问题这样的复杂问题,PSO算法可能会陷入局部最优解。为了克服这个问题,可以采用多种改进方法,如引入局部搜索机制或组合其他优化算法。

总结而言,粒子群算法是一种有效的优化算法,适用于解决泊位调度问题。通过调整粒子的速度和位置,并结合合适的目标函数,可以找到一个较优的泊位调度方案,以最小化船只在港时间的总和。然而,对于复杂的问题,仍然需要进一步的研究和改进。

流程如下:

数据: 

停泊时间:

船舶泊位

1#

2#

3#

4#

5#

6#

船1

3

3

3.290323

3.290323

3.290323

3.290323

船2

3.29

3.29

3.608387

3.608387

3.608387

3.608387

船3

3.35

3.35

3.674194

3.674194

3.674194

3.674194

船4

5

5

5.483871

5.483871

5.483871

5.483871

船5

1.94

1.94

2.127742

2.127742

2.127742

2.127742

船6

1.45

1.45

1.590323

1.590323

1.590323

1.590323

船7

0.97

0.97

1.063871

1.063871

1.063871

1.063871

船8

4.61

4.61

5.056129

5.056129

5.056129

5.056129

船9

5.06

5.06

5.549677

5.549677

5.549677

5.549677

船10

7.29

7.29

7.995484

7.995484

7.995484

7.995484

船11

2.68

2.68

2.939355

2.939355

2.939355

2.939355

船12

5.74

5.74

6.295484

6.295484

6.295484

6.295484

船13

0.65

0.65

0.712903

0.712903

0.712903

0.712903

船14

1.26

1.26

1.381935

1.381935

1.381935

1.381935

船15

0.81

0.81

0.888387

0.888387

0.888387

0.888387

船16

1.58

1.58

1.732903

1.732903

1.732903

1.732903

船17

0.77

0.77

0.844516

0.844516

0.844516

0.844516

船18

1

1

1.096774

1.096774

1.096774

1.096774

船19

3.1

3.1

3.4

3.4

3.4

3.4

船20

0.71

0.71

0.77871

0.77871

0.77871

0.77871

船21

0.97

0.97

1.063871

1.063871

1.063871

1.063871

船22

3.23

3.23

3.542581

3.542581

3.542581

3.542581

到港时间

到港时间

装卸量

0:00

93

3:00

102

3:20

104

3:20

155.25

6:00

60

6:00

45

6:20

30

8:00

143

8:00

157

9:00

226

10:00

83

10:30

178

11:00

20

12:00

39

12:00

25

14:40

49

14:40

24

15:00

31

15:00

96

18:50

22

21:10

30

22:00

100

装卸速度

装卸速度

泊位1

31

泊位2

31

泊位3

34

泊位4

35

泊位5

36

泊位6

37

程序结果:

粒子群算法优化得到最优成本

Valuebest =

          70.7209677419355

粒子群算法优化得到最优粒子

psobest =

  1 至 6 列

                        -1        -0.276376816044633        0.0110834051789061        -0.588322236509362        -0.871896419169566                         1

  7 至 12 列

         0.882043641594225         0.394648902367656         0.649790379151507                        -1       -0.0590250701437167                        -1

  13 至 18 列

                         1                         1         0.941078162307071                         1         0.925858029802935        -0.755714050637173

  19 至 24 列

         0.642324983266078                         1                         1                         1          6.33758011393659          5.85939735126611

  25 至 30 列

                      6.99          2.49649225428723          4.78659200827198                      6.99                      6.99          5.21051862147312

  31 至 36 列

          4.23951824644256                         1          2.42088917195685          3.73458639406582                      6.99                      6.99

  37 至 42 列

          2.24808981777205          5.21345040727043          4.55442530362547          1.11174406517414                         1                         1

  43 至 44 列

          1.69713330740672          6.04705817521954

y =

          70.7209677419355

G =

                         1                         6                         0          3.29032258064516

                        10                         1                         9                     16.29

                        12                         3                      10.5          16.7954838709677

                         5                         4                         6          8.12774193548387

                        18                         1                     16.29                     17.29

                         4                         2          3.33333333333333          8.33333333333333

                         2                         5                         3          6.60838709677419

                        11                         2                        10                     12.68

                         3                         6          3.33333333333333          7.00752688172043

                         8                         5                         8          13.0561290322581

                        19                         1                     17.29                     20.39

                         9                         4          8.12774193548387          13.6774193548387

                         7                         6          7.00752688172043          8.07139784946237

                        17                         4          14.6666666666667          15.5111827956989

                        15                         2                     12.68                     13.49

                         6                         6          8.07139784946237          9.66172043010753

                        13                         6                        11          11.7129032258064

                        14                         6                        12           13.381935483871

                        16                         5          14.6666666666667          16.3995698924731

                        20                         1                     20.39                      21.1

                        21                         1          21.1666666666667          22.1366666666667

                        22                         6                        22          25.5425806451613

Stime =

                         0          3.29032258064516

                         3          6.60838709677419

          3.33333333333333          7.00752688172043

          3.33333333333333          8.33333333333333

                         6          8.12774193548387

          8.07139784946237          9.66172043010753

          7.00752688172043          8.07139784946237

                         8          13.0561290322581

          8.12774193548387          13.6774193548387

                         9                     16.29

                        10                     12.68

                      10.5          16.7954838709677

                        11          11.7129032258064

                        12           13.381935483871

                     12.68                     13.49

          14.6666666666667          16.3995698924731

          14.6666666666667          15.5111827956989

                     16.29                     17.29

                     17.29                     20.39

                     20.39                      21.1

          21.1666666666667          22.1366666666667

                        22          25.5425806451613

S =

     1    10    12     5    18     4     2    11     3     8    19     9     7    17    15     6    13    14    16    20    21    22

T =

     6     5     6     2     4     6     6     5     4     1     2     3     6     6     2     5     4     1     1     1     1     6

Stime =

                         0          3.29032258064516

                         3          6.60838709677419

          3.33333333333333          7.00752688172043

          3.33333333333333          8.33333333333333

                         6          8.12774193548387

          8.07139784946237          9.66172043010753

          7.00752688172043          8.07139784946237

                         8          13.0561290322581

          8.12774193548387          13.6774193548387

                         9                     16.29

                        10                     12.68

                      10.5          16.7954838709677

                        11          11.7129032258064

                        12           13.381935483871

                     12.68                     13.49

          14.6666666666667          16.3995698924731

          14.6666666666667          15.5111827956989

                     16.29                     17.29

                     17.29                     20.39

                     20.39                      21.1

          21.1666666666667          22.1366666666667

                        22          25.5425806451613

>>

这篇关于粒子群算法求解港口泊位调度问题(MATLAB代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/660152

相关文章

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放