文献速递:人工智能医学影像分割--- 深度学习分割骨盆骨骼:大规模CT数据集和基线模型

本文主要是介绍文献速递:人工智能医学影像分割--- 深度学习分割骨盆骨骼:大规模CT数据集和基线模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文献速递:人工智能医学影像分割— 深度学习分割骨盆骨骼:大规模CT数据集和基线模型

我们为大家带来人工智能技术在医学影像分割上的应用文献。

人工智能在医学影像分析中发挥着至关重要的作用,尤其体现在图像分割技术上。这项技术的目的是准确划分人体重要器官和异常物体,例如肺部、结节、肿瘤等。高质量的图像分割结果对于医疗手术的规划至关重要,同时也在疾病的诊断和预后中发挥着重要作用。它能够帮助医生清晰地标记出病变部位的确切位置,并确定其它重要特征,如大小、体积等。采用基于人工智能的解决方案,能够显著提高这些程序的效率和精准度,大大缩短所需时间。

01

文献速递介绍

骨盆是连接脊柱和下肢的重要结构,在维持身体稳定和保护腹部内部器官方面发挥着至关重要的作用。骨盆的异常,如髋关节发育不良和骨盆骨折等,会对我们的身体健康产生严重影响。例如,骨盆骨折作为最严重和危及生命的骨损伤,会损伤骨折部位的其他器官,在最严重的情况下,骨盆开放性骨折的死亡率可达45%。医学影像学在骨盆损伤患者的诊断和治疗的整个过程中发挥着重要作用。与X射线图像相比,CT保留了实际的解剖结构,包括深度信息,为外科医生提供了更多关于损伤部位的细节,因此常用于三维重建,以便进行后续手术计划和术后效果评估。在这些应用中,准确的骨盆骨分割对于评估骨盆损伤的严重程度至关重要,有助于外科医生做出正确的判断和选择合适的手术入路。过去,外科医生使用Mimics1等软件从CT手动分割骨盆,这既耗时又不可重复。

为了满足这些临床需求,本文提出了一种能够准确快速地从CT中分割骨盆骨的自动算法。现有的从CT中分割骨盆骨的方法大多使用简单的阈值、区域生长和手工模型,其中包括可变形模型、统计形状模型、分水岭和其他。这些方法专注于局部灰度信息,由于皮质骨和骨小梁之间的密度差异,精度有限。而骨小梁在纹理和强度方面与周围组织相似。如果存在骨折,则进一步导致弱边缘。最近,基于深度学习的方法在图像分割方面取得了巨大的成功;然而,它们对CT骨盆骨分割的有效性还不完全清楚。虽然有一些与骨盆骨相关的数据集,但其中只有少数是开源的,并且大小较小(小于5张图像或200张切片),远远少于其他器官。虽然进行了基于深度学习的实验,但结果并不是很好(骰子=0.92),数据集只有200个CT片。对于深度学习方法的鲁棒性,拥有一个包括尽可能多的真实场景的综合数据集至关重要。本文通过策划一个大规模的CT数据集来弥补这一差距,并探索深度学习在这一任务中的应用,据我们所知,这是该领域的第一次真正尝试,具有更多的统计意义和参考价值。为了构建一个全面的数据集,我们必须处理由于成像分辨率和视野(FOV)的差异、不同部位产生的域移位、造影血管、粪便和食糜、骨折、低剂量、金属伪影等因素引起的各种图像外观变化。图1给出了这些不同条件的一些示例。在上述外观变化中,金属伪影的挑战是最难处理的。此外,本文的目标是将骨盆分割为多个骨头,包括腰椎、骶骨、左髋和右髋,而不是简单地从CT中分割出整个骨盆。本文的贡献总结如下:- 从多个领域和不同制造商汇集的骨盆CT数据集,包括1184个CT卷(超过320K CT切片)的不同外观变化(包括75个带有金属伪影的CT)。它们的多骨标签由专家仔细注释。我们将其开源以造福整个社区;- 学习一个深度多类分割网络[14],从多领域标记的图像中获得腰椎、骶骨、左髋和右髋分割的更有效表示,从而获得所需的准确性和鲁棒性;- 一个全自动分析管道,实现了高精度、高效率和鲁棒性,从而使其在临床实践中具有潜在的应用价值。

Title

题目

Deep learning to segment pelvic bones: large-scale CT datasets and baseline models

深度学习分割骨盆骨骼:大规模CT数据集和基线模型

Abstract

摘要

Pelvic bone segmentation in CT has always been an essential step in clinical diagnosis and surgery planning of pelvic bone diseases. Existing methods for pelvic bone segmentation are either hand-crafted or semi-automatic and achieve limited accuracy when dealing with image appearance variations due to the multi-site domain shift, the presence of contrasted vessels, coprolith and chyme, bone fractures, low dose, metal artifacts, etc. Due to the lack of a large-scale pelvic CT dataset with annotations, deep learning methods are not fully explored.

在CT中对骨盆骨骼的分割一直是临床诊断和骨盆骨疾病手术规划中的一个重要步骤。现有的骨盆骨骼分割方法要么是手工制作的,要么是半自动的,当面对由于多站点域转换、对比鲜明的血管、粪石和食糜、骨折、低剂量、金属伪影等因素造成的图像外观变化时,这些方法的准确性有限。由于缺乏一个带有注释的大规模骨盆CT数据集,深度学习方法尚未得到充分探索。

Methods

方法

In this paper, we aim to bridge the data gap by curating a large pelvic CT dataset pooled from multiple sources, including 1184 CT volumes with a variety of appearance variations. Then, we propose for the first time, to the best of our knowledge, to learn a deep multi-class network for segmenting lumbar spine, sacrum, left hip, and right hip, from multiple-domain images simultaneously to obtain more effective and robust feature representations. Finally, we introduce a post-processor based on the signed distance function (SDF).

在本文中,我们旨在通过从多个来源整理一个大型骨盆CT数据集来弥补数据差距,包括1184个CT体积和多种外观变化。然后,据我们所知,我们首次提出学习一个深度多类网络,用于同时从多域图像中分割腰椎、骶骨、左髋和右髋,以获得更有效和稳健的特征表示。最后,我们介绍了一种基于有符号距离函数(SDF)的后处理器。

Results

结果

Extensive experiments on our dataset demonstrate the effectiveness of our automatic method, achieving an average Dice of 0.987 for a metal-free volume. SDF post-processor yields a decrease of 15.1% in Hausdorff distance compared with traditional post-processor.

我们对数据集进行的广泛实验证明了我们自动方法的有效性,对于无金属伪影的体积,达到了平均Dice系数0.987。与传统后处理器相比,SDF后处理器使豪斯多夫距离减少了15.1%。

Conclusions

结论

We believe this large-scale dataset will promote the development of the whole community and open source the images, annotations, codes, and trained baseline models at https://github.com/ICT-MIRACLE-lab/CTPelvic1K. Keywords CT dataset · Pelvic segmentation · Deep learning · SDF post-processing

我们相信这个大规模数据集将促进整个社区的发展,并在https://github.com/ICT-MIRACLE-lab/CTPelvic1K上开源图像、注释、代码和训练好的基线模型。关键词 CT数据集 · 骨盆分割 · 深度学习 · SDF后处理

Figure

图片

Fig. 1 Pelvic CT image examples with various conditions

图 1. 不同条件下的骨盆CT图像示例

图片

Fig. 2 The designed annotation pipeline based on an AID (Annotation by Iterative Deep Learning) strategy. In Step I, two senior experts first manually annotate 40 cases of data as the initial database. In Step II, we train a deep network based on the human annotated database and use it to predict new data. In Step III, initial annotations from the deep network are checked and modified by human annotators. Step II and Step III are repeated iteratively to refine a deep network to a more and more powerful ‘annotator’. This deep network ‘annotator’ also unifies the annotation standards of different human annotators

图 2 基于AID(通过迭代深度学习的注释)策略设计的注释流程图。在第一步中,两位资深专家首先手动标注40例数据作为初始数据库。在第二步中,我们基于人工注释的数据库训练一个深度网络,并用它来预测新数据。在第三步中,深度网络的初始注释由人类注释者检查和修改。第二步和第三步重复迭代,以精炼深度网络成为一个越来越强大的‘注释者’。这个深度网络‘注释者’也统一了不同人类注释者的标注标准。

图片

Fig. 3 Overview of our pelvic bones segmentation system, which learns from multi-domain CT images for effective and robust representations. The 3D U-Net cascade is used here to exploit more spatial information in 3D CT images. SDF is introduced to our post-processor to add distance constraint besides size constraint used in traditional MCR-based method

图 3 我们骨盆骨骼分割系统的概览,该系统从多域CT图像中学习,以获得有效和稳健的表示。这里使用了3D U-Net级联,以利用3D CT图像中更多的空间信息。在我们的后处理器中引入了SDF,除了传统的基于MCR方法使用的大小约束之外,还增加了距离约束。

图片

Fig. 4 Heat map of DC & HD results in Table 3. The vertical axis represents different sub-datasets, and the horizontal axis represents different models. In order to show the normal values more clearly, we clip some outliers to the boundary value, i.e., 0.95 in DC and 30 in HD. The values out of range are marked in the grid. The cross in the lower right corner indicates that there is no corresponding experiment

图 4 表 3中DC和HD结果的热图。垂直轴代表不同的子数据集,水平轴代表不同的模型。为了更清楚地显示正常值,我们将一些异常值剪切到边界值,即DC中的0.95和HD中的30。超出范围的值在网格中标记。右下角的叉号表示没有相应的实验。

图片

Fig. 5 Visualization of segmentation results from six datasets tested on different models. Among them, the white, green, blue, and yellow parts of the segmentation results represent the sacrum, left hip bone, right hip bone, and lumbar spine, respectively

图 5 六个数据集在不同模型上测试的分割结果可视化。其中,分割结果的白色、绿色、蓝色和黄色部分分别代表骶骨、左髋骨、右髋骨和腰椎。

图片

Fig. 6 Comparison between post-processing methods: traditional MCR and the proposed SDF filtering

图 6 后处理方法的比较:传统的MCR和提出的SDF过滤。

Table

图片

Table 1 Overview of our large-scale Pelvic CT dataset. ‘#’ represents the number of 3D volumes. ‘Tr/Val/Ts’ denotes training/validation/testing set. Ticks [] in table refer to we can access

the CT images’ acquisition equipment manufacturer[M] information of that sub-dataset. Due to the difficulty of labeling the CLINIC-metal, CLINIC-metal is taken off in our supervised training phase

表 1 我们大规模骨盆CT数据集概览。‘#’代表3D体积的数量。‘Tr/Val/Ts’表示训练/验证/测试集。表格中的勾选框[]表示我们可以访问该子数据集的CT图像采集设备制造商[M]信息。由于标记CLINIC-metal的困难,CLINIC-metal在我们的监督训练阶段被剔除。

图片

Table 2 (a) The DC and HD results for different models tested on ‘ALL’ dataset. (b) Effect of different post-processing methods on ‘ALL’ dataset. ‘ALL’ refers to the six metal-free sub-datasets. ‘Average’ refers to the mean value of four anatomical structures’ DC/HD. ‘Whole’ refers to treating sacrum, left hip, right hip, and lumbar spine as a whole bone. The top three numbers in each part are marked in bold, red, and blue

表 2 (a) 在‘ALL’数据集上测试的不同模型的DC和HD结果。(b)不同后处理方法在‘ALL’数据集上的效果。‘ALL’指的是六个无金属伪影的子数据集。‘Average’指的是四个解剖结构的DC/HD的平均值。‘Whole’指的是将骶骨、左髋、右髋和腰椎视为一个整体骨骼。每部分前三个数字以粗体、红色和蓝色标记。

图片

Table 3 The ‘Average’ DC and HD results for different models tested on different datasets. Please refer to the Online Resource 1 for details. The top three numbers in each part are marked in bold, red, and blue

表 3 在不同数据集上测试的不同模型的‘平均’DC和HD结果。详情请参阅在线资源1。每部分前三个数字以粗体、红色和蓝色标记。

这篇关于文献速递:人工智能医学影像分割--- 深度学习分割骨盆骨骼:大规模CT数据集和基线模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/659599

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06