【省选模拟】Fac (生成函数)(组合意义)(拉格朗日反演)(倍增)(多项式全家桶)

本文主要是介绍【省选模拟】Fac (生成函数)(组合意义)(拉格朗日反演)(倍增)(多项式全家桶),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

传送门

  • 没有题解是真的秀,连蒙带猜搞了一天结果今天早上才写完,不过还好有 3 个神仙学长助力
    不知道题解是怎么想到的,所以只好直接说结论了

  • 经观察发现可以先求出 ( i k i − 1 ) 1 i \binom{ik}{i-1}\frac{1}{i} (i1ik)i1,这个在 k = 2 k=2 k=2 的时候是卡特兰数也就是二叉树的个数
    考虑将其扩展为 k k k 叉树,即证 f ( x ) = x f ( x ) k + 1 f(x)=xf(x)^k+1 f(x)=xf(x)k+1 ∑ ( i k i − 1 ) 1 i x i \sum \binom{ik}{i-1}\frac{1}{i}x^i (i1ik)i1xi 的生成函数

  • 证明:
    f ( x ) − 1 f ( x ) k = x , g ( x ) = x − 1 x k ⇒ [ x n ] f ( x ) = [ x n − 1 ] 1 n ( x g ( x ) ) n [ x n − 1 ] 1 n ( x g ( x ) ) n = [ x n − 1 ] 1 n ( x k + 1 x − 1 ) n \frac{f(x)-1}{f(x)^k}=x,g(x)=\frac{x-1}{x^k}\\ \Rightarrow [x^n]f(x)=[x^{n-1}]\frac{1}{n}(\frac{x}{g(x)})^n\\ [x^{n-1}]\frac{1}{n}(\frac{x}{g(x)})^n=[x^{n-1}]\frac{1}{n}(\frac{x^{k+1}}{x-1})^n f(x)kf(x)1=x,g(x)=xkx1[xn]f(x)=[xn1]n1(g(x)x)n[xn1]n1(g(x)x)n=[xn1]n1(x1xk+1)n
    中间用到了拉格朗日反演
    后面的一个是 ( x k + 1 x − 1 ) n = ∑ i ≤ k x i (\frac{x^{k+1}}{x-1})^n=\sum_{i\le k}x^i (x1xk+1)n=ikxi,所以组合意义是 x 1 + x 2 + ⋯ + x n = n − 1 , x i ≤ k x_1+x_2+\dots +x_n=n-1,x_i\le k x1+x2++xn=n1,xik,令 x = k − x x=k-x x=kx,即可得方案数为 ( k n n − 1 ) \binom{kn}{n-1} (n1kn)
    也同时证明了 n n n 个点的 k k k 叉树(有根无标号儿子有顺序)的个数是 ( n k n − 1 ) 1 n \binom{nk}{n-1}\frac{1}{n} (n1nk)n1

  • 于是问题就变成了解 x f ( x ) k − f ( x ) + 1 ≡ 0 ( m o d x n ) xf(x)^k-f(x)+1\equiv 0(mod\ x^n) xf(x)kf(x)+10(mod xn)
    这个是可以倍增的,假设已经求得 x f 0 k − f 0 + 1 ≡ 0 ( m o d x n ) xf_0^k-f_0+1\equiv 0(mod\ x^n) xf0kf0+10(mod xn)
    考虑扩展到 x f k − f + 1 ≡ 0 ( m o d x 2 n ) xf^k-f+1\equiv 0(mod\ x^{2n}) xfkf+10(mod x2n)
    我们只需要求出 [ n , 2 n ) [n,2n) [n,2n) 的系数,不妨令为 f 1 f_1 f1,我们用 f 0 + f 1 f_0+f_1 f0+f1 表示新的 f f f
    考虑前一半的贡献, x f 0 k xf_0^k xf0k [ n , 2 n ) [n,2n) [n,2n) 是有贡献的,不妨令为 A A A
    ( f 0 + f 1 ) k (f_0+f_1)^k (f0+f1)k [ n , 2 n ) [n,2n) [n,2n) 的贡献只会有一个 x x x 选到 [ n , 2 n ) [n,2n) [n,2n),故可以列出方程
    k f 1 f 0 k − 1 + A = f 1 kf_1f_0^{k-1}+A=f_1 kf1f0k1+A=f1
    解出即可,倍增算贡献还是比较巧妙
    C o d e Code Code,最慢的点跑了 1 s 1s 1s

这篇关于【省选模拟】Fac (生成函数)(组合意义)(拉格朗日反演)(倍增)(多项式全家桶)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/658678

相关文章

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Java利用docx4j+Freemarker生成word文档

《Java利用docx4j+Freemarker生成word文档》这篇文章主要为大家详细介绍了Java如何利用docx4j+Freemarker生成word文档,文中的示例代码讲解详细,感兴趣的小伙伴... 目录技术方案maven依赖创建模板文件实现代码技术方案Java 1.8 + docx4j + Fr