本文主要是介绍随机森林与决策树效益对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
随机森林
随机森林是非常具有代表性的Bagging集成算法,它的所有基评估器都是决策树,分类树组成的森林就叫做随机森林分类器,回归树所集成的森林就叫做随机森林回归器。
重要参数
1.控制基评估器的参数
参数 | 含义 |
criterion | 不纯度的衡量指标,有基尼系数和信息熵两种选择 |
max_depth | 树的最大深度,超过最大深度的树枝都会被剪掉 |
min_samples_leaf | 一个节点在分枝后的每个子节点都必须包含至少min_samples_leaf个训练样 本,否则分枝就不会发生 |
min_samples_split | 一个节点必须要包含至少min_samples_split个训练样本,这个节点才允许被分 枝,否则分枝就不会发生 |
max_features | max_features限制分枝时考虑的特征个数,超过限制个数的特征都会被舍弃, 默认值为总特征个数开平方取整 |
min_impurity_decrease | 限制信息增益的大小,信息增益小于设定数值的分枝不会发生 |
2.n_estimators
这是森林中树木的数量,即基评估器的数量。这个参数对随机森林模型的精确性影响是单调的,n_estimators越 大,模型的效果往往越好。但是相应的,任何模型都有决策边界,n_estimators达到一定的程度之后,随机森林的 精确性往往不在上升或开始波动,并且,n_estimators越大,需要的计算量和内存也越大,训练的时间也会越来越 长。对于这个参数,我们是渴望在训练难度和模型效果之间取得平衡。 n_estimators的默认值在现有版本的sklearn中是10,但是在即将更新的0.22版本中,这个默认值会被修正为 100。这个修正显示出了使用者的调参倾向:要更大的n_estimators。
随机森林与决策树对比
以随机森林分类器为例,开发环境jupyter lab
1.首先建立一片森林,导入所需模块
%matplotlib inline
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_wine
2.导入所需数据集
wine = load_wine()
wine.data
wine.target
3.建立模型 (sklearn建模的基本流程)
from sklearn.model_selection import train_test_split
Xtrain, Xtest, Ytrain, Ytest = train_test_split(wine.data,wine.target,test_size=0.3)
clf = DecisionTreeClassifier(random_state=0)
rfc = RandomForestClassifier(random_state=0)clf = clf.fit(Xtrain,Ytrain)
rfc = rfc.fit(Xtrain,Ytrain)score_c = clf.score(Xtest,Ytest)
score_r = rfc.score(Xtest,Ytest)print("Single Tree:{}".format(score_c),"Random Forest:{}".format(score_r))
4.画出随机森林和决策树在一组交叉验证下的效果对比
#交叉验证:cross_val_scorefrom sklearn.model_selection import cross_val_score
import matplotlib.pyplot as pltrfc = RandomForestClassifier(n_estimators=25)
rfc_s = cross_val_score(rfc,wine.data,wine.target,cv=10)clf = DecisionTreeClassifier()
clf_s = cross_val_score(clf,wine.data,wine.target,cv=10)plt.plot(range(1,11),rfc_s,label = "RandomForest")
plt.plot(range(1,11),clf_s,label = "Decision Tree")
plt.legend()
plt.show()
结果
5.. 画出随机森林和决策树在十组交叉验证下的效果对比
rfc_l = []
clf_l = []
for i in range(10):rfc = RandomForestClassifier(n_estimators=25)rfc_s = cross_val_score(rfc,wine.data,wine.target,cv=10).mean()rfc_l.append(rfc_s)clf = DecisionTreeClassifier()clf_s = cross_val_score(clf,wine.data,wine.target,cv=10).mean()clf_l.append(clf_s)plt.plot(range(1,11),rfc_l,label = "Random Forest")
plt.plot(range(1,11),clf_l,label = "Decision Tree")
plt.legend()
plt.show()
结果
6. n_estimators的学习曲线
superpa = []
for i in range(200):rfc = RandomForestClassifier(n_estimators=i+1,n_jobs=-1)rfc_s = cross_val_score(rfc,wine.data,wine.target,cv=10).mean()superpa.append(rfc_s)
print(max(superpa),superpa.index(max(superpa)))
plt.figure(figsize=[20,5])
plt.plot(range(1,201),superpa)
plt.show()
结果
这篇关于随机森林与决策树效益对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!